Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Self-shaping liquid crystal droplets by balancing bulk elasticity and interfacial tension

Peddireddy, K., Čopar, S., Le, K. V., Muševič, I., Bahr, C., & Jampani, V. S. R. (2021). Self-shaping liquid crystal droplets by balancing bulk elasticity and interfacial tension. Proceedings of the National Academy of Sciences, 118(14): e2011174118. doi:10.1073/pnas.2011174118.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Peddireddy, Karthik1, Autor           
Čopar, Simon, Autor
Le, Khoa V., Autor
Muševič, Igor, Autor
Bahr, Christian1, Autor           
Jampani, Venkata Subba Rao1, Autor           
Affiliations:
1Group Structure formation in soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063301              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The shape diversity and controlled reconfigurability of closed surfaces
and filamentous structures, universally found in cellular colonies and
living tissues, are challenging to reproduce. Here, we demonstrate a
method for the self-shaping of liquid crystal (LC) droplets into anisotropic
and three-dimensional superstructures, such as LC fibers, LC helices,
and differently shaped LC vesicles. The method is based on two
surfactants: one dissolved in the LC dispersed phase and the other in
the aqueous continuous phase. We use thermal stimuli to tune the
bulk LC elasticity and interfacial energy, thereby transforming an
emulsion of polydispersed, spherical nematic droplets into numerous,
uniform-diameter fibers with multiple branches and vice versa. Furthermore,
when the nematic LC is cooled to the smectic-A LC phase,
we produce monodispersed microdroplets with a tunable diameter
dictated by the cooling rate. Utilizing this temperature-controlled
self-shaping of LCs, we demonstrate life-like smectic LC vesicle structures
analogous to the biomembranes in living systems. Our experimental
findings are supported by a theoretical model of equilibrium
interface shapes. The shape transformation is induced by negative
interfacial energy, which promotes a spontaneous increase of the interfacial
area at a fixed LC volume. The method was successfully applied
to many different LC materials and phases, demonstrating a
universal mechanism for shape transformation in complex fluids.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-03-312021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1073/pnas.2011174118
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 7 Band / Heft: 118 (14) Artikelnummer: e2011174118 Start- / Endseite: - Identifikator: ISSN: 0027-8424
ISSN: 1091-6490