Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The molecular basis for the pH-dependent calcium affinity of the pattern recognition receptor langerin

Joswig, J.-O., Anders, J., Zhang, H.-X., Rademacher, C., & Keller, B. G. (2021). The molecular basis for the pH-dependent calcium affinity of the pattern recognition receptor langerin. The Journal of Biological Chemistry, 296: 100718. doi:10.1016/j.jbc.2021.100718.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 4MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Joswig, Jan-O., Autor
Anders, Jennifer, Autor
Zhang, Heng-Xi1, Autor           
Rademacher, Christoph1, Autor           
Keller, Bettina G., Autor
Affiliations:
1Christoph Rademacher, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863300              

Inhalt

einblenden:
ausblenden:
Schlagwörter: pH regulation, allosteric regulation, conformational change, calcium-binding protein, pattern recognition receptor (PRR), molecular dynamics, computer modeling
 Zusammenfassung: The C-type lectin receptor langerin plays a vital role in the mammalian defense against invading pathogens. Langerin requires a 2++ co-factor, the binding affinity of which is regulated by pH. Thus, 2++ is bound when langerin is on the membrane, but released when langerin and its pathogen substrate traffic to the acidic endosome, allowing the substrate to be degraded. The change in pH is sensed by protonation of the allosteric pH-sensor histidine H294. However, the mechanism by which 2++ is released from the buried binding site is not clear. We studied the structural consequences of protonating H294 by molecular dynamics simulations (total simulation time: about 120 μs) and Markov models. We discovered a relay mechanism in which a proton is moved into the vicinity of the 2++-binding site without transferring the initial proton from H294. Protonation of H294 unlocks a conformation in which a protonated lysine side-chain forms a hydrogen bond with a 2++-coordinating aspartic acid. This destabilizes 2++ in the binding pocket, which we probed by steered molecular dynamics. After 2++-release, the proton is likely transferred to the aspartic acid and stabilized by a dyad with a nearby glutamic acid, triggering a conformational transition and thus preventing 2++-rebinding. These results show how pH-regulation of a buried orthosteric binding site from a solvent-exposed allosteric pH-sensor can be realized by information transfer through a specific chain of conformational arrangements.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-05-122021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.jbc.2021.100718
BibTex Citekey: JOSWIG2021100718
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Biological Chemistry
  Andere : JBC
  Kurztitel : J. Biol. Chem.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Baltimore, etc. : American Society for Biochemistry and Molecular Biology [etc.]
Seiten: - Band / Heft: 296 Artikelnummer: 100718 Start- / Endseite: - Identifikator: ISSN: 0021-9258