Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Benchmarking quantum tomography completeness and fidelity with machine learning

Teo, Y. S., Shin, S., Jeong, H., Kim, Y., Kim, Y.-H., Struchalin, G. I., et al. (in preparation). Benchmarking quantum tomography completeness and fidelity with machine learning.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2103.01535.pdf (Preprint), 4MB
Name:
2103.01535.pdf
Beschreibung:
File downloaded from arXiv at 2021-05-20 15:36
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Teo, Yong Siah1, Autor
Shin, Seongwook1, Autor
Jeong, Hyunseok1, Autor
Kim, Yosep1, Autor
Kim, Yoon-Ho1, Autor
Struchalin, Gleb I.1, Autor
Kovlakov, Egor V.1, Autor
Straupe, Stanislav S.1, Autor
Kulik, Sergei P.1, Autor
Leuchs, Gerd2, Autor           
Sanchez-Soto, Luis3, Autor           
Affiliations:
1external, ou_persistent22              
2Leuchs Emeritus Group, Emeritus Groups, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164407              
3Quantumness, Tomography, Entanglement, and Codes, Leuchs Emeritus Group, Emeritus Groups, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364709              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Quantum Physics, quant-ph
 Zusammenfassung: We train convolutional neural networks to predict whether or not a set of measurements is informationally complete to uniquely reconstruct any given quantum state with no prior information. In addition, we perform fidelity benchmarking based on this measurement set without explicitly carrying out state tomography. The networks are trained to recognize the fidelity and a
reliable measure for informational completeness through collective encoding of quantum measurements, data and target states into grayscale images. By
gradually accumulating measurements and data, these convolutional networks can efficiently certify a low-measurement-cost quantum-state characterization
scheme. We confirm the potential of this machine-learning approach by presenting experimental results for both spatial-mode and multiphoton systems
of large dimensions. These predictions are further shown to improve with noise recognition when the networks are trained with additional bootstrapped training sets from real experimental data.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-03-022021-03-03
 Publikationsstatus: Keine Angabe
 Seiten: 22 pages, 20 figures, relevant GitHub repository: https://github.com/ACAD-repo/ICCNet-FidNet
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2103.01535
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: