Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Serial reproduction reveals the geometry of visuospatial representations

Langlois, T. A., Jacoby, N., Suchow, J. W., & Griffiths, T. L. (2021). Serial reproduction reveals the geometry of visuospatial representations. Proceedings of the National Academy of Sciences of the United States of America, 118(13): e2012938118. doi:10.1073/pnas.2012938118.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
21-cap-lan-01-serial.pdf (Verlagsversion), 4MB
Name:
21-cap-lan-01-serial.pdf
Beschreibung:
OA
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
Copyright © 2021 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Langlois, Thomas A.1, 2, 3, Autor
Jacoby, Nori1, 4, Autor           
Suchow, Jordan W.5, Autor
Griffiths, Thomas L.3, Autor
Affiliations:
1Research Group Computational Auditory Perception, Max Planck Institute for Empirical Aesthetics, Max Planck Society, ou_3024247              
2Department of Psychology, University of California, Berkeley, CA 94704, ou_persistent22              
3Department of Computer Science, Princeton University, Princeton, NJ 08542;, ou_persistent22              
4The Center for Science and Society, Columbia University, New York, NY 10027, ou_persistent22              
5School of Business, Stevens Institute of Technology, Hoboken, NJ 07030, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: visual perception, spatial memory, iterated learning, Bayesian statistics
 Zusammenfassung: An essential function of the human visual system is to locate objects in space and navigate the environment. Due to limited resources, the visual system achieves this by combining imperfect sensory information with a belief state about locations in a scene, resulting in systematic distortions and biases. These biases can be captured by a Bayesian model in which internal beliefs are expressed in a prior probability distribution over locations in a scene. We introduce a paradigm that enables us to measure these priors by iterating a simple memory task where the response of one participant becomes the stimulus for the next. This approach reveals an unprecedented richness and level of detail in these priors, suggesting a different way to think about biases in spatial memory. A prior distribution on locations in a visual scene can reflect the selective allocation of coding resources to different visual regions during encoding (“efficient encoding”). This selective allocation predicts that locations in the scene will be encoded with variable precision, in contrast to previous work that has assumed fixed encoding precision regardless of location. We demonstrate that perceptual biases covary with variations in discrimination accuracy, a finding that is aligned with simulations of our efficient encoding model but not the traditional fixed encoding view. This work demonstrates the promise of using nonparametric data-driven approaches that combine crowdsourcing with the careful curation of information transmission within social networks to reveal the hidden structure of shared visual representations.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-06-292021-02-192021-03-30
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1073/pnas.2012938118
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
  Andere : PNAS
  Andere : Proceedings of the National Academy of Sciences of the USA
  Kurztitel : Proc. Natl. Acad. Sci. U. S. A.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : National Academy of Sciences
Seiten: - Band / Heft: 118 (13) Artikelnummer: e2012938118 Start- / Endseite: - Identifikator: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230