English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches

Bratovič, M., Fonfara, I., Chylinski, K., Gálvez, E. J. C., Sullivan, T. J., Boerno, S., et al. (2020). Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches. Nature Chemical Biology, 16(5), 587-595. doi:10.1038/s41589-020-0490-4.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bratovič, Majda1, Author
Fonfara, Ines2, Author
Chylinski, Krzysztof, Author
Gálvez, Eric J. C.1, Author
Sullivan, Timothy J.1, Author
Boerno, Stefan3, Author
Timmermann, Bernd3, Author
Boettcher, Michael1, Author
Charpentier, Emmanuelle1, Author
Affiliations:
1Max Planck Unit for the Science of Pathogens, Max Planck Society, ou_3213696              
2Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Max Planck Society, Charitéplatz 1, D-10117 Berlin, DE, ou_2266691              
3Sequencing Core Facility (Head: Bernd Timmermann), Scientific Service (Head: Claudia Thurow), Max Planck Institute for Molecular Genetics, Max Planck Society, Ihnestraße 63-73, 14195 Berlin, DE, ou_1479670              

Content

show
hide
Free keywords: Arginine, CRISPR-Associated Protein 9, CRISPR-Cas Systems, DNA, DNA Mismatch Repair, Escherichia coli, HEK293 Cells, Humans, MCF-7 Cells, Protein Conformation, RNA
 Abstract: The RNA-programmable DNA-endonuclease Cas9 is widely used for genome engineering, where a high degree of specificity is required. To investigate which features of Cas9 determine the sensitivity to mismatches along the target DNA, we performed in vitro biochemical assays and bacterial survival assays in Escherichia coli. We demonstrate that arginines in the Cas9 bridge helix influence guide RNA, and target DNA binding and cleavage. They cluster in two groups that either increase or decrease the Cas9 sensitivity to mismatches. We show that the bridge helix is essential for R-loop formation and that R63 and R66 reduce Cas9 specificity by stabilizing the R-loop in the presence of mismatches. Additionally, we identify Q768 that reduces sensitivity of Cas9 to protospacer adjacent motif-distal mismatches. The Cas9_R63A/Q768A variant showed increased specificity in human cells. Our results provide a firm basis for function- and structure-guided mutagenesis to increase Cas9 specificity for genome engineering.

Details

show
hide
Language(s):
 Dates: 2020-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41589-020-0490-4
BibTex Citekey: bratovic_bridge_2020
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Chemical Biology
  Abbreviation : Nat. Chem. Biol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : Nature Pub. Group
Pages: - Volume / Issue: 16 (5) Sequence Number: - Start / End Page: 587 - 595 Identifier: ISSN: 1552-4450
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000021290_1