Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A flexible Bayesian framework for unbiased estimation of timescales

Zeraati, R., Engel, T., & Levina, A. (2022). A flexible Bayesian framework for unbiased estimation of timescales. Nature Computational Science, 2(3), 193-204. doi:10.1038/s43588-022-00214-3.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
externe Referenz:
https://www.nature.com/articles/s43588-022-00214-3.pdf (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Zeraati, R1, Autor           
Engel, TA, Autor
Levina, A1, Autor           
Affiliations:
1Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3505519              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Timescales characterize the pace of change for many dynamic processes in nature. They are usually estimated by fitting the exponential decay of data autocorrelation in the time or frequency domain. Here we show that this standard procedure often fails to recover the correct timescales due to a statistical bias arising from the finite sample size. We develop an alternative approach to estimate timescales by fitting the sample autocorrelation or power spectrum with a generative model based on a mixture of Ornstein–Uhlenbeck processes using adaptive approximate Bayesian computations. Our method accounts for finite sample size and noise in data and returns a posterior distribution of timescales that quantifies the estimation uncertainty and can be used for model selection. We demonstrate the accuracy of our method on synthetic data and illustrate its application to recordings from the primate cortex. We provide a customizable Python package that implements our framework via different generative models suitable for diverse applications.

Details

ausblenden:
Sprache(n):
 Datum: 2022-03
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s43588-022-00214-3
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Nature Computational Science
  Kurztitel : Nat Comput Sci
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Nature Research
Seiten: - Band / Heft: 2 (3) Artikelnummer: - Start- / Endseite: 193 - 204 Identifikator: ISSN: 2662-8457
CoNE: https://pure.mpg.de/cone/journals/resource/2662-8457