Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Temperature-Dependent Electronic Ground-State Charge Transfer in van der Waals Heterostructures

Park, S., Wang, H., Schultz, T., Shin, D., Ovsyannikov, R., Zacharias, M., et al. (2021). Temperature-Dependent Electronic Ground-State Charge Transfer in van der Waals Heterostructures. Advanced Materials, 33(29): 2008677. doi:10.1002/adma.202008677.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
adma202008677-sup-0001-suppmat.pdf (Ergänzendes Material), 4MB
Name:
adma202008677-sup-0001-suppmat.pdf
Beschreibung:
Supporting Information
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
adma.202008677.pdf (Verlagsversion), 4MB
Name:
adma.202008677.pdf
Beschreibung:
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
© The Authors. Advanced Materials published by Wiley-VCH GmbH.

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://dx.doi.org/10.1002/adma.202008677 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://arxiv.org/abs/2103.07962 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Park, S.1, Autor
Wang, H.2, 3, Autor
Schultz, T.4, 5, Autor
Shin, D.4, Autor
Ovsyannikov, R.5, Autor
Zacharias, M.2, 6, Autor
Maksimov, D.2, 7, Autor           
Meissner, M.8, Autor
Hasegawa, Y.8, Autor
Yamaguchi, T.8, Autor
Kera, S.8, Autor
Aljarb, A.9, Autor
Hakami, M.9, Autor
Li, L.-J.9, 10, Autor
Tung, V.9, Autor
Amsalem, P.4, Autor
Rossi, M.2, 7, Autor           
Koch, N.4, 5, Autor
Affiliations:
1Advanced Analysis Center, Korea Institute of Science and Technology (KIST), ou_persistent22              
2Fritz Haber Institute of the Max Planck Society, ou_persistent22              
3Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), ou_persistent22              
4Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof, ou_persistent22              
5Helmholtz-Zentrum für Materialien und Energie GmbH, ou_persistent22              
6Department of Mechanical and Materials Science Engineering, Cyprus University of Technology, ou_persistent22              
7Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3185035              
8Institute for Molecular Science, Okazaki, ou_persistent22              
9Physical Sciences and Engineering, King Abdullah University of Science and Technology, ou_persistent22              
10Department of Mechanical Engineering, The University of Hong Kong, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: 2D semiconductors, charge transfer, electron–phonon coupling, molecular dopants, MoS2, photoelectron spectroscopy
 Zusammenfassung: Electronic charge rearrangement between components of a heterostructure is the fundamental principle to reach the electronic ground state. It is acknowledged that the density of state distribution of the components governs the amount of charge transfer, but a notable dependence on temperature is not yet considered, particularly for weakly interacting systems. Here, it is experimentally observed that the amount of ground-state charge transfer in a van der Waals heterostructure formed by monolayer MoS2 sandwiched between graphite and a molecular electron acceptor layer increases by a factor of 3 when going from 7 K to room temperature. State-of-the-art electronic structure calculations of the full heterostructure that accounts for nuclear thermal fluctuations reveal intracomponent electron–phonon coupling and intercomponent electronic coupling as the key factors determining the amount of charge transfer. This conclusion is rationalized by a model applicable to multicomponent van der Waals heterostructures.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-04-032020-12-232021-05-252021-07-22
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2103.07962
DOI: 10.1002/adma.202008677
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : This work was funded by the Deutsche Forschungsgemeinschaft (DFG)—Projektnummer 182087777—SFB 951, AM 419/1-1, and by the JSPS KAKENHI under Grant No. JP18H03904. Further support by the National Research Foundation (NRF) of Korea under Grant No. 2018M3D1A1058793 and Technology Innovation Program (20012502), funded by the Korean Ministry of Trade, industry and Energy, is acknowledged. The authors thank the IMS and HZB for allocating synchrotron radiation beam time (UVSOR, BL7U and Bessy II, PM4). H.W. thanks Karen Fidanyan for assistance with the phonon calculations. Open access funding enabled and organized by Projekt DEAL.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Materials
  Andere : Adv. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH
Seiten: - Band / Heft: 33 (29) Artikelnummer: 2008677 Start- / Endseite: - Identifikator: ISSN: 0935-9648
CoNE: https://pure.mpg.de/cone/journals/resource/954925570855