Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A synthetic C4 shuttle via the beta-hydroxyaspartate cycle in C3 plants.

Roell, M.-S., Schada von Borzykowski, L., Westhoff, P., Plett, A., Paczia, N., Claus, P., et al. (2021). A synthetic C4 shuttle via the beta-hydroxyaspartate cycle in C3 plants. Proceedings of the National Academy of Sciences of the United States of America, 118(21): e2022307118. doi:10.1073/pnas.2022307118.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1073/pnas.2022307118 (Verlagsversion)
Beschreibung:
Verlagsversion
OA-Status:
Hybrid

Urheber

einblenden:
ausblenden:
 Urheber:
Roell, Marc-Sven1, Autor
Schada von Borzykowski, Lennart2, Autor
Westhoff, Philipp1, Autor
Plett, Anastasija1, Autor
Paczia, Nicole3, Autor                 
Claus, Peter3, Autor           
Urte, Schlueter1, Autor
Erb, Tobias J.2, Autor                 
Weber, Andreas P M1, Autor
Affiliations:
1external, ou_persistent22              
2Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266303              
3Core Facility Metabolomics and small Molecules Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266267              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Plants depend on the enzyme ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) for CO2 fixation. However, especially in
C3 plants, photosynthetic yield is reduced by formation of
2-phosphoglycolate, a toxic oxygenation product of Rubisco, which needs
to be recycled in a high-flux-demanding metabolic process called
photorespiration. Canonical photorespiration dissipates energy and
causes carbon and nitrogen losses. Reducing photorespiration through
carbon-concentrating mechanisms, such as C4 photosynthesis, or bypassing
photorespiration through metabolic engineering is expected to improve
plant growth and yield. The beta-hydroxyaspartate cycle (BHAC) is a
recently described microbial pathway that converts glyoxylate, a
metabolite of plant photorespiration, into oxaloacetate in a highly
efficient carbon-, nitrogen-, and energy-conserving manner. Here, we
engineered a functional BHAC in plant peroxisomes to create a
photorespiratory bypass that is independent of 3-phosphoglycerate
regeneration or decarboxylation of photorespiratory precursors. While
efficient oxaloacetate conversion in Arabidopsis thaliana still masks
the full potential of the BHAC, nitrogen conservation and accumulation
of signature C4 metabolites demonstrate the proof of principle, opening
the door to engineering a photorespiration-dependent synthetic
carbon-concentrating mechanism in C3 plants.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 34001608
DOI: 10.1073/pnas.2022307118
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
  Andere : PNAS
  Andere : Proceedings of the National Academy of Sciences of the USA
  Kurztitel : Proc. Natl. Acad. Sci. U. S. A.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : National Academy of Sciences
Seiten: - Band / Heft: 118 (21) Artikelnummer: e2022307118 Start- / Endseite: - Identifikator: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230