Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

EndNote (UTF-8)
 
DownloadE-Mail
  Flow-Induced Symmetry Breaking in Growing Bacterial Biofilms

Pearce, P., Song, B., Skinner, D. J., Mok, R., Hartmann, R., Singh, P. K., et al. (2019). Flow-Induced Symmetry Breaking in Growing Bacterial Biofilms. PHYSICAL REVIEW LETTERS, 123(25): 258101. doi:10.1103/PhysRevLett.123.258101.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Pearce, Philip1, Autor
Song, Boya1, Autor
Skinner, Dominic J.1, Autor
Mok, Rachel1, Autor
Hartmann, Raimo2, Autor
Singh, Praveen K.1, Autor
Jeckel, Hannah2, Autor           
Oishi, Jeffrey S.1, Autor
Drescher, Knut2, Autor           
Dunkel, Jorn1, Autor
Affiliations:
1external, ou_persistent22              
2Max Planck Research Group Bacterial Biofilms, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266298              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Bacterial biofilms represent a major form of microbial life on Earth and
serve as a model active nematic system, in which activity results from
growth of the rod-shaped bacterial cells. In their natural environments,
ranging from human organs to industrial pipelines, biofilms have evolved
to grow robustly under significant fluid shear. Despite intense
practical and theoretical interest, it is unclear how strong fluid flow
alters the local and global architectures of biofilms. Here, we combine
highly time-resolved single-cell live imaging with 3D multiscale
modeling to investigate the mechanisms by which flow affects the
dynamics of all individual cells in growing biofilms. Our experiments
and cell-based simulations reveal three quantitatively different growth
phases in strong external flow and the transitions between them. In the
initial stages of biofilm development, flow induces a downstream
gradient in cell orientation, causing asymmetrical dropletlike biofilm
shapes. In the later developmental stages, when the majority of cells
are sheltered from the flow by the surrounding extracellular matrix,
buckling-induced cell verticalization in the biofilm core restores
radially symmetric biofilm growth, in agreement with predictions of a 3D
continuum model.

Details

ausblenden:
Sprache(n):
 Datum: 2019-12-20
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000503823800013
DOI: 10.1103/PhysRevLett.123.258101
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: PHYSICAL REVIEW LETTERS
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 123 (25) Artikelnummer: 258101 Start- / Endseite: - Identifikator: ISSN: 0031-9007