English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Dielectric Properties of Nanoconfined Water: A Canonical Thermopotentiostat Approach

Deißenbeck, F., Freysoldt, C., Todorova, M., Neugebauer, J., & Wippermann, S. M. (2021). Dielectric Properties of Nanoconfined Water: A Canonical Thermopotentiostat Approach. Physical Review Letters, 126(13): 136803. doi:10.1103/PhysRevLett.126.136803.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Dielectric Properties of Nanoconfined Water a Canonical Thermopotentiostat Approach.pdf (Publisher version), 3MB
Name:
Dielectric Properties of Nanoconfined Water a Canonical Thermopotentiostat Approach.pdf
Description:
Open Access
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
American Physical Society

Locators

show

Creators

show
hide
 Creators:
Deißenbeck, Florian1, Author              
Freysoldt, Christoph2, Author              
Todorova, Mira3, Author              
Neugebauer, Jörg3, Author              
Wippermann, Stefan Martin1, Author              
Affiliations:
1Atomistic Modelling, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863350              
2Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863342              
3Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              

Content

show
hide
Free keywords: Computation theory; Density functional theory; Electric potential; Molecular dynamics, Canonical ensemble; Computational time; Constant temperature; Molecular dynamics simulations; Orders of magnitude; Polarization fluctuations, Dielectric properties
 Abstract: We introduce a novel approach to sample the canonical ensemble at constant temperature and applied electric potential. Our approach can be straightforwardly implemented into any density-functional theory code. Using thermopotentiostat molecular dynamics simulations allows us to compute the dielectric constant of nanoconfined water without any assumptions for the dielectric volume. Compared to the commonly used approach of calculating dielectric properties from polarization fluctuations, our thermopotentiostat technique reduces the required computational time by 2 orders of magnitude. © 2021 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Details

show
hide
Language(s): eng - English
 Dates: 2021-04-02
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevLett.126.136803
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : We thank L. Fumagalli for providing the raw experimental data from Ref. and D. Marx for discussions. F. D. and S. W. are supported by the German Federal Ministry of Education and Research (BMBF) within the NanoMatFutur programme, Grant No. 13N12972. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Science Foundation) under Germany’s Excellence Strategy—EXC 2033—Project No. 390677874 and within the framework of SFB 1394, Project No. 409476157. Supercomputer time provided by the National Energy Research Scientific Computing Center (NERSC) Berkeley, Project No. 35687, is gratefully acknowledged.
Grant ID : -
Funding program : -
Funding organization : -

Source 1

show
hide
Title: Physical Review Letters
  Abbreviation : Phys. Rev. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Physical Society
Pages: 6 Volume / Issue: 126 (13) Sequence Number: 136803 Start / End Page: - Identifier: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1