Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Dielectric Properties of Nanoconfined Water: A Canonical Thermopotentiostat Approach

Deißenbeck, F., Freysoldt, C., Todorova, M., Neugebauer, J., & Wippermann, S. M. (2021). Dielectric Properties of Nanoconfined Water: A Canonical Thermopotentiostat Approach. Physical Review Letters, 126(13): 136803. doi:10.1103/PhysRevLett.126.136803.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Dielectric Properties of Nanoconfined Water a Canonical Thermopotentiostat Approach.pdf (Verlagsversion), 3MB
Name:
Dielectric Properties of Nanoconfined Water a Canonical Thermopotentiostat Approach.pdf
Beschreibung:
Open Access
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
American Physical Society

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Deißenbeck, Florian1, Autor           
Freysoldt, Christoph2, Autor           
Todorova, Mira3, Autor           
Neugebauer, Jörg3, Autor           
Wippermann, Stefan Martin1, Autor           
Affiliations:
1Atomistic Modelling, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863350              
2Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863342              
3Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computation theory; Density functional theory; Electric potential; Molecular dynamics, Canonical ensemble; Computational time; Constant temperature; Molecular dynamics simulations; Orders of magnitude; Polarization fluctuations, Dielectric properties
 Zusammenfassung: We introduce a novel approach to sample the canonical ensemble at constant temperature and applied electric potential. Our approach can be straightforwardly implemented into any density-functional theory code. Using thermopotentiostat molecular dynamics simulations allows us to compute the dielectric constant of nanoconfined water without any assumptions for the dielectric volume. Compared to the commonly used approach of calculating dielectric properties from polarization fluctuations, our thermopotentiostat technique reduces the required computational time by 2 orders of magnitude. © 2021 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-04-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1103/PhysRevLett.126.136803
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : We thank L. Fumagalli for providing the raw experimental data from Ref. and D. Marx for discussions. F. D. and S. W. are supported by the German Federal Ministry of Education and Research (BMBF) within the NanoMatFutur programme, Grant No. 13N12972. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Science Foundation) under Germany’s Excellence Strategy—EXC 2033—Project No. 390677874 and within the framework of SFB 1394, Project No. 409476157. Supercomputer time provided by the National Energy Research Scientific Computing Center (NERSC) Berkeley, Project No. 35687, is gratefully acknowledged.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review Letters
  Kurztitel : Phys. Rev. Lett.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Physical Society
Seiten: 6 Band / Heft: 126 (13) Artikelnummer: 136803 Start- / Endseite: - Identifikator: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1