English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Common microscopic origin of the phase transitions in Ta2NiS5 and the excitonic insulator candidate Ta2NiSe5

Windgätter, L., Rösner, M., Mazza, G., Hübener, H., Georges, A., Millis, A. J., et al. (2021). Common microscopic origin of the phase transitions in Ta2NiS5 and the excitonic insulator candidate Ta2NiSe5. npj Computational Materials, 7(1): 210. doi:10.1038/s41524-021-00675-6.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
s41524-021-00675-6.pdf (Publisher version), 6MB
Name:
s41524-021-00675-6.pdf
Description:
Open Access
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
© the Author(s)
:
41524_2021_675_MOESM1_ESM.pdf (Supplementary material), 3MB
Name:
41524_2021_675_MOESM1_ESM.pdf
Description:
Supplementary information
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://arxiv.org/abs/2105.13924 (Preprint)
Description:
-
Locator:
https://doi.org/10.1038/s41524-021-00675-6 (Publisher version)
Description:
-

Creators

show
hide
 Creators:
Windgätter, L.1, Author              
Rösner, M.2, Author
Mazza, G.3, Author
Hübener, H.1, Author              
Georges, A.3, 4, 5, 6, Author
Millis, A. J.6, 7, Author
Latini, S.1, Author              
Rubio, A.1, 5, 8, Author              
Affiliations:
1Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
2Radboud University, Institute for Molecules and Materials, ou_persistent22              
3Department of Quantum Matter Physics, University of Geneva, ou_persistent22              
4Collège de France, ou_persistent22              
5Center for Computational Quantum Physics, Flatiron Institute, ou_persistent22              
6CPHT, CNRS, Ecole Polytechnique, IP Paris, ou_persistent22              
7Department of Physics, Columbia University, ou_persistent22              
8Nano-Bio Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The structural phase transition in Ta<sub>2</sub>NiSe<sub>5</sub> has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural and electronic instabilities on crystal symmetry breaking has yet to be disentangled. Meanwhile, the phase transition in its complementary material Ta<sub>2<sub>NiS<sub>5</sub> does not show any experimental hints of an excitonic insulating phase. We present a microscopic investigation of the electronic and phononic effects involved in the structural phase transition in Ta2NiSe5 and Ta<sub>2<sub>NiS<sub>5</sub> using extensive first-principles calculations. In both materials the crystal symmetries are broken by phonon instabilities, which in turn lead to changes in the electronic bandstructure also observed in the experiment. A total energy landscape analysis shows no tendency towards a purely electronic instability and we find that a sizeable lattice distortion is needed to open a bandgap. We conclude that an excitonic instability is not needed to explain the phase transition in both Ta<sub>2</sub>NiSe<sub>5</sub> and Ta<sub>2<sub>NiS<sub>5</sub>.

Details

show
hide
Language(s):
 Dates: 2021-06-162021-11-192021-12-20
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2105.13924
DOI: 10.1038/s41524-021-00675-6
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy - Cluster of Excellence Advanced Imaging of Matter (AIM) EXC 2056 - 390715994 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - SFB-925 - project 170620586. Support by the Max Planck Institute - New York City Center for Non-Equilibrium Quantum Phenomena is acknowledged.
Grant ID : -
Funding program : -
Funding organization : -

Source 1

show
hide
Title: npj Computational Materials
  Abbreviation : npj Comput. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Springer Nature
Pages: - Volume / Issue: 7 (1) Sequence Number: 210 Start / End Page: - Identifier: ISSN: 2057-3960
CoNE: https://pure.mpg.de/cone/journals/resource/2057-3960