Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Total OH reactivity over the Amazon rainforest: variability with temperature, wind, rain, altitude, time of day, season, and an overall budget closure

Pfannerstill, E. Y., Reijrink, N. G., Edtbauer, A., Ringsdorf, A., Zannoni, N., Araujo, A., et al. (2021). Total OH reactivity over the Amazon rainforest: variability with temperature, wind, rain, altitude, time of day, season, and an overall budget closure. Atmospheric Chemistry and Physics, 21(8), 6231-6256. doi:10.5194/acp-21-6231-2021.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Pfannerstill, Eva Y.1, Autor           
Reijrink, Nina G.1, Autor           
Edtbauer, Achim1, Autor           
Ringsdorf, Akima1, Autor           
Zannoni, Nora1, Autor           
Araujo , Alessandro, Autor
Ditas, Florian2, Autor           
Holanda, Bruna A.2, Autor           
Sa, Marta O., Autor
Tsokankunku, Anywhere1, Autor           
Walter, David1, Autor           
Wolff, Stefan, Autor
Lavric , Jost V., Autor
Pöhlker, Christopher2, Autor           
Sörgel, Matthias1, Autor           
Williams, Jonathan1, Autor           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              
2Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826290              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The tropical forests are Earth's largest source of biogenic volatile organic compounds (BVOCs) and thus also the largest atmospheric sink region for the hydroxyl radical (OH). However, the OH sink above tropical forests is poorly understood, as past studies have revealed large unattributed fractions of total OH reactivity. We present the first total OH reactivity and volatile organic compound (VOC) measurements made at the Amazon Tall Tower Observatory (ATTO) at 80, 150, and 320 m above ground level, covering two dry seasons, one wet season, and one transition season in 2018–2019. By considering a wide range of previously unaccounted for VOCs, which we identified by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS), the unattributed fraction was with an overall average of 19 % within the measurement uncertainty of ∼ 35 %. In terms of seasonal average OH reactivity, isoprene accounted for 23 %–43 % of the total and oxygenated VOCs (OVOCs) for 22 %–40 %, while monoterpenes, sesquiterpenes, and green leaf volatiles combined were responsible for 9 %–14 %. These findings show that OVOCs were until now an underestimated contributor to the OH sink above the Amazon forest.

By day, total OH reactivity decreased towards higher altitudes with strongest vertical gradients observed around noon during the dry season (−0.026 s−1 m−1), while the gradient was inverted at night. Seasonal differences in total OH reactivity were observed, with the lowest daytime average and standard deviation of 19.9 ± 6.2 s−1 during a wet–dry transition season with frequent precipitation; 23.7 ± 6.5 s−1 during the wet season; and the highest average OH reactivities during two dry-season observation periods with 28.1 ± 7.9 s−1 and 29.1 ± 10.8 s−1, respectively. The effects of different environmental parameters on the OH sink were investigated, and quantified, where possible. Precipitation caused short-term spikes in total OH reactivity, which were followed by below-normal OH reactivity for several hours. Biomass burning increased total OH reactivity by 2.7 to 9.5 s−1. We present a temperature-dependent parameterization of OH reactivity that could be applied in future models of the OH sink to further reduce our knowledge gaps in tropical-forest OH chemistry.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-04-26
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000644720900002
DOI: 10.5194/acp-21-6231-2021
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Atmospheric Chemistry and Physics
  Kurztitel : ACP
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Göttingen : Copernicus Publications
Seiten: - Band / Heft: 21 (8) Artikelnummer: - Start- / Endseite: 6231 - 6256 Identifikator: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016