Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  PCprophet: a framework for protein complex prediction and differential analysis using proteomic data

Fossati, A., Li, C., Uliana, F., Wendt, F., Frommelt, F., Sykacek, P., et al. (2021). PCprophet: a framework for protein complex prediction and differential analysis using proteomic data. Nature Methods, 18(5), 520-527. doi:10.1038/s41592-021-01107-5.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Fossati, Andrea1, Autor
Li, Chen1, Autor
Uliana, Federico1, Autor
Wendt, Fabian1, Autor
Frommelt, Fabian1, Autor
Sykacek, Peter1, Autor
Heusel, Moritz1, Autor
Hallal, Mahmoud1, Autor
Bludau, Isabell2, Autor           
Capraz, Tumay1, Autor
Xue, Peng1, Autor
Song, Jiangning1, Autor
Wollscheid, Bernd1, Autor
Purcell, Anthony W.1, Autor
Gstaiger, Matthias1, Autor
Aebersold, Ruedi1, Autor
Affiliations:
1external, ou_persistent22              
2Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565159              

Inhalt

ausblenden:
Schlagwörter: MASS-SPECTROMETRY; 26S PROTEASOME; ARCHITECTURE; ONTOLOGY; CYCLEBiochemistry & Molecular Biology;
 Zusammenfassung: Despite the availability of methods for analyzing protein complexes, systematic analysis of complexes under multiple conditions remains challenging. Approaches based on biochemical fractionation of intact, native complexes and correlation of protein profiles have shown promise. However, most approaches for interpreting cofractionation datasets to yield complex composition and rearrangements between samples depend considerably on protein-protein interaction inference. We introduce PCprophet, a toolkit built on size exclusion chromatography-sequential window acquisition of all theoretical mass spectrometry (SEC-SWATH-MS) data to predict protein complexes and characterize their changes across experimental conditions. We demonstrate improved performance of PCprophet over state-of-the-art approaches and introduce a Bayesian approach to analyze altered protein-protein interactions across conditions. We provide both command-line and graphical interfaces to support the application of PCprophet to any cofractionation MS dataset, independent of separation or quantitative liquid chromatography-MS workflow, for the detection and quantitative tracking of protein complexes and their physiological dynamics.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2021
 Publikationsstatus: Erschienen
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000648344900030
DOI: 10.1038/s41592-021-01107-5
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Nature Methods
  Andere : Nature Methods
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : Nature Pub. Group
Seiten: - Band / Heft: 18 (5) Artikelnummer: - Start- / Endseite: 520 - 527 Identifikator: ISSN: 1548-7091
CoNE: https://pure.mpg.de/cone/journals/resource/111088195279556