English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Comparison of Many-Particle Representations for Selected Configuration Interaction: II. Numerical Benchmark Calculations

Chilkuri, V. G., & Neese, F. (2021). Comparison of Many-Particle Representations for Selected Configuration Interaction: II. Numerical Benchmark Calculations. Journal of Chemical Theory and Computation, 17(5), 2868-2885. doi:10.1021/acs.jctc.1c00081.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
591_ct1c00081_si_001-1.pdf (Supplementary material), 2MB
Name:
591_ct1c00081_si_001-1.pdf
Description:
Supporting Information
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Chilkuri, Vijay Gopal1, Author           
Neese, Frank1, Author           
Affiliations:
1Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Content

show
hide
Free keywords: -
 Abstract: The present work is the second part in our three-part series on the comparison of many-particle representations for the selected configuration interaction (CI) method. In this work, we present benchmark calculations based on our selected CI program called the iterative configuration expansion (ICE) that is inspired by the CIPSI method of Malrieu and co-workers (Malrieu J. Chem. Phys. 1973, 58, (12), 5745−5759). We describe the main parameters that enter in this algorithm and perform benchmark calculations on a set of 21 small molecules and compare ground state energies with full configuration interaction (FCI) results (FCI21 test set). The focus is the comparison of the performance of three different types of many-particle basis functions (MPBFs): (1) individual Slater determinants (DETS), (2) individual spin-adapted configuration state functions (CSFs), and (3) all CSFs of a given total spin that can be generated from spatial configurations (CFGs). An analysis of the cost of the calculation in terms of the number of wavefunction parameters and the energy error is evaluated for the DET-, CFG-, and CSF-based ICE. The main differences for the three many-particle basis representations show up in the number of wavefunction parameters and the rate of convergence toward the FCI limit with the thresholds of the ICE. Next, we analyze the best way to extrapolate the ICE energies toward the FCI results as a function of the thresholds. The efficiency of the extrapolation is investigated relative to the FCI21 test set as well as near FCI calculations on three moderately sized hydrocarbon molecules CH4, C2H4, and C4H6. Finally, we comment on the size-inconsistency error for the three many-particle representations and compare it with the error in the total energy. The implication for selected CI implementations with any of the three many-particle representations is discussed.

Details

show
hide
Language(s): eng - English
 Dates: 2021-01-222021-04-222021-05-11
 Publication Status: Published in print
 Pages: 18
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acs.jctc.1c00081
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Chemical Theory and Computation
  Abbreviation : J. Chem. Theory Comput.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Chemical Society
Pages: - Volume / Issue: 17 (5) Sequence Number: - Start / End Page: 2868 - 2885 Identifier: ISSN: 1549-9618
CoNE: https://pure.mpg.de/cone/journals/resource/111088195283832