English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Direct measurement of key exciton properties: Energy, dynamics, and spatial distribution of the wave function

Dong, S., Puppin, M., Pincelli, T., Beaulieu, S., Christiansen, D., Hübener, H., et al. (2021). Direct measurement of key exciton properties: Energy, dynamics, and spatial distribution of the wave function. Natural Sciences, 1(1): e10010. doi:10.1002/ntls.10010.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
ntls10010-sup-0001-suppmat.zip (Supplementary material), 15MB
Name:
ntls10010-sup-0001-suppmat.zip
Description:
Supporting Information (pdf)
Visibility:
Public
MIME-Type / Checksum:
application/zip / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
ntls.10010.pdf (Publisher version), 2MB
Name:
ntls.10010.pdf
Description:
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
© The Authors. Natural Sciences published by Wiley-VCH GmbH

Locators

show
hide
Locator:
https://dx.doi.org/10.1002/ntls.10010 (Publisher version)
Description:
-
Locator:
https://arxiv.org/abs/2012.15328 (Preprint)
Description:
-
Locator:
https://dx.doi.org/10.1002/ntls.10017 (Supplementary material)
Description:
This Research Paper is showcased in a Highlight entitled "Disclosed: Quasiparticle properties and dynamics in real and momentum space"

Creators

show
hide
 Creators:
Dong, S.1, Author
Puppin, M.1, 2, Author
Pincelli, T.1, Author
Beaulieu, S.1, Author
Christiansen, D.3, Author
Hübener, H.4, 5, Author              
Nicholson, C. W.1, 6, Author
Xian, R. P.1, Author
Dendzik, M.1, 7, Author
Deng, Y.1, 8, Author
Windsor, Y. W.1, Author
Selig, M.3, Author
Malic, E.9, Author
Rubio, A.4, 5, Author              
Knorr, A.3, Author
Wolf, M.1, Author
Rettig, L.1, Author
Ernstorfer, R.1, Author
Affiliations:
1Fritz-Haber-Institut der Max-Planck-Gesellschaft, ou_persistent22              
2Laboratoire de Spectroscopie Ultrarapide and Lausanne Centre for Ultrafast Science (LACUS), École polytechnique fédérale de Lausanne, ISIC, ou_persistent22              
3Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, ou_persistent22              
4Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
5Center for Free Electron Laser Science, ou_persistent22              
6Département de Physique and Fribourg Center for Nanomaterials, Université de Fribourg, ou_persistent22              
7Department of Applied Physics, KTH Royal Institute of Technology, ou_persistent22              
8SwissFEL, Paul Scherrer Institute, ou_persistent22              
9Department of Physics, Chalmers University of Technology, ou_persistent22              

Content

show
hide
Free keywords: condensed matter physics, exciton physics, many-body physics, quasi-particle interactions, semiconductors, time-resolved photoemission spectroscopy
 Abstract: Excitons, Coulomb-bound electron–hole pairs, are the fundamental excitations governing the optoelectronic properties of semiconductors. Although optical signatures of excitons have been studied extensively, experimental access to the excitonic wave function itself has been elusive. Using multidimensional photoemission spectroscopy, we present a momentum-, energy-, and time-resolved perspective on excitons in the layered semiconductor WSe2. By tuning the excitation wavelength, we determine the energy–momentum signature of bright exciton formation and its difference from conventional single-particle excited states. The multidimensional data allow to retrieve fundamental exciton properties like the binding energy and the exciton–lattice coupling and to reconstruct the real-space excitonic distribution function via Fourier transform. All quantities are in excellent agreement with microscopic calculations. Our approach provides a full characterization of the exciton properties and is applicable to bright and dark excitons in semiconducting materials, heterostructures, and devices.

Details

show
hide
Language(s): eng - English
 Dates: 2021-04-192020-12-302021-04-242021-06-07
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/ntls.10010
arXiv: 2012.15328
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : -
Grant ID : 694097
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)
Project name : -
Grant ID : 682843
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Natural Sciences
  Abbreviation : Nat. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 1 (1) Sequence Number: e10010 Start / End Page: - Identifier: CoNE: https://pure.mpg.de/cone/journals/resource/2698-6248