Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Training Strategies for Deep Learning Gravitational-Wave Searches

Schäfer, M., Zelenka, O., Nitz, A. H., Ohme, F., & Brügmann, B. (2022). Training Strategies for Deep Learning Gravitational-Wave Searches. Physical Review D, 105: 043002. doi:10.1103/PhysRevD.105.043002.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2106.03741.pdf (Preprint), 3MB
Name:
2106.03741.pdf
Beschreibung:
File downloaded from arXiv at 2021-06-10 07:38
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
PhysRevD.105.043002.pdf (Verlagsversion), 4MB
Name:
PhysRevD.105.043002.pdf
Beschreibung:
Open Access
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schäfer, Marlin1, Autor           
Zelenka, Ondřej, Autor
Nitz, Alexander H.2, Autor           
Ohme, Frank1, Autor           
Brügmann, Bernd, Autor
Affiliations:
1Binary Merger Observations and Numerical Relativity, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_2461691              
2Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24011              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Astrophysics, Instrumentation and Methods for Astrophysics, astro-ph.IM,Computer Science, Learning, cs.LG,General Relativity and Quantum Cosmology, gr-qc
 Zusammenfassung: Compact binary systems emit gravitational radiation which is potentially
detectable by current Earth bound detectors. Extracting these signals from the
instruments' background noise is a complex problem and the computational cost
of most current searches depends on the complexity of the source model. Deep
learning may be capable of finding signals where current algorithms hit
computational limits. Here we restrict our analysis to signals from
non-spinning binary black holes and systematically test different strategies by
which training data is presented to the networks. To assess the impact of the
training strategies, we re-analyze the first published networks and directly
compare them to an equivalent matched-filter search. We find that the deep
learning algorithms can generalize low signal-to-noise ratio (SNR) signals to
high SNR ones but not vice versa. As such, it is not beneficial to provide high
SNR signals during training, and fastest convergence is achieved when low SNR
samples are provided early on. During testing we found that the networks are
sometimes unable to recover any signals when a false alarm probability
$<10^{-3}$ is required. We resolve this restriction by applying a modification
we call unbounded Softmax replacement (USR) after training. With this
alteration we find that the machine learning search retains $\geq 97.5\%$ of
the sensitivity of the matched-filter search down to a false-alarm rate of 1
per month.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-06-072022
 Publikationsstatus: Erschienen
 Seiten: 17 pages, 11 figures, 3 tables, supplemental materials at https://github.com/gwastro/ml-training-strategies
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2106.03741
DOI: 10.1103/PhysRevD.105.043002
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review D
  Andere : Phys. Rev. D.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lancaster, Pa. : American Physical Society
Seiten: - Band / Heft: 105 Artikelnummer: 043002 Start- / Endseite: - Identifikator: ISSN: 0556-2821
CoNE: https://pure.mpg.de/cone/journals/resource/111088197762258