English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Contrast-reversed binocular dot-pairs in random-dot stereograms for depth perception in central visual field: Probing the dynamics of feedforward-feedback processes in visual inference

Zhaoping, L. (2021). Contrast-reversed binocular dot-pairs in random-dot stereograms for depth perception in central visual field: Probing the dynamics of feedforward-feedback processes in visual inference. Vision Research, 186, 124-139. doi:10.1016/j.visres.2021.03.005.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Paper_Final_June_2021Post.pdf (Any fulltext), 500KB
Name:
Paper_Final_June_2021Post.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Zhaoping, L1, 2, Author              
Affiliations:
1Department of Sensory and Sensorimotor Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017467              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: In a random-dot stereogram (RDS), the spatial disparities between the interocularly corresponding black and white random dots determine the depths of object surfaces. If a black dot in one monocular image corresponds to a white dot in the other, disparity-tuned neurons in primary visual cortex (V1) respond as if their preferred disparities become non-preferred and vice versa, reversing the disparity sign reported to higher visual areas. Reversed depth is perceptible in the peripheral but not the central visual field. This study demonstrates that, in central vision, adding contrast-reversed dots to a noisy RDS (containing the normal contrast-matched dots) can augment or degrade depth perception. Augmentation occurs when the reversed depth signals are congruent with the normal depth signals to report the same disparity sign, and occurs regardless of the viewing duration. Degradation occurs when the reversed and normal depth signals are incongruent with each other and when the RDS is viewed briefly. These phenomena reflect the Feedforward-Feedback-Verify-and-reWeight (FFVW) process for visual inference in central vision, and are consistent with the central-peripheral dichotomy that central vision has a stronger top-down feedback from higher to lower brain areas to disambiguate noisy and ambiguous inputs from V1. When a RDS is viewed too briefly for feedback, augmentation and degradation work by adding the reversed depth signals from contrast-reversed dots to the feedforward, normal, depth signals. With a sufficiently long viewing duration, the feedback vetoes incongruent reversed depth signals and amends or completes the imperfect, but congruent, reversed depth signals by analysis-by-synthesis computation.

Details

show
hide
Language(s):
 Dates: 2021-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.visres.2021.03.005
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Vision Research
  Other : Vision Res.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Pergamon
Pages: - Volume / Issue: 186 Sequence Number: - Start / End Page: 124 - 139 Identifier: ISSN: 0042-6989
CoNE: https://pure.mpg.de/cone/journals/resource/954925451842