hide
Free keywords:
Radiative magnetohydrodynamics; Radiative transfer; Radiative transfer simulations; Stellar atmospheres; Computational methods; Solar atmosphere; Stellar chromospheres; Ionization; Solar chromosphere; Recombination; Spectroscopy; Theoretical techniques
Abstract:
In the stellar chromospheres, radiative energy transport is dominated by only the strongest spectral lines. For these lines, the approximation of local thermodynamic equilibrium (LTE) is known to be very inaccurate, and a state of equilibrium cannot be assumed in general. To calculate the radiative energy transport under these conditions, the population evolution equation must be evaluated explicitly, including all time-dependent terms. We develop a numerical method to solve the evolution equation for the atomic-level populations in a time-implicit way, keeping all time-dependent terms to first order. We show that the linear approximation of the time dependence of the populations can handle very large time steps without losing accuracy. We reproduce the benchmark solutions from earlier, well-established works in terms of non-LTE kinetic equilibrium solutions and typical ionization/recombination timescales in the solar chromosphere.