English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Information deletion in the visual system

Zhaoping, L. (2021). Information deletion in the visual system. Talk presented at CNS*2021 Workshop on Methods of Information Theory in Computational Neuroscience. 2021-07-06 - 2021-07-07.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Zhaoping, L1, 2, Author           
Affiliations:
1Department of Sensory and Sensorimotor Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017467              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: I will discuss the amount of visual input information along the visual pathway from retinal inputs, to retinal outputs, to visual perception. In humans, there are about one megabytes per second (compressed from about 20 MB/second of raw visual inputs) of visual input information being transmitted in the optic nerve from the retina. One megabytes can contain the amount of information in the text in a large book. It has been measured, since 1950s, that only about 40 bits per second of information is admitted to the attentional bottleneck, due to the limited processing power in the brain (40 bits contains roughly the amount of information in two short sentences of text). This bottleneck is manifested in the inattentional blindness behaviorally. An important question is, where along the visual pathway, from the optic nerve to the perceptual outcome and awareness, is the information being lost. I will argue that, to a substantial extent, the bottleneck starts around the output of the primary visual cortex (V1). This is partly suggested by the recent evidence supporting the V1 Saliency Hypothesis (V1SH) that the attentional selection of visual inputs, by gaze shifts, is partly guided exogenenously by a bottom-up saliency map created by V1. Secondly, it is apparent that much of the information available in V1 is not available in visual perception, or not even in V2, the extrastriate cortex immediately downstream from V1 along the visual pathway. For example, the information about the eye of origin of visual inputs is lost by V2, whose neurons are mostly binocular and thus blind to the eye of origin of visual inputs. Recognizing this bottleneck starting at V1's output suggests a new framework to understand vision.

Details

show
hide
Language(s):
 Dates: 2021-06
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: CNS*2021 Workshop on Methods of Information Theory in Computational Neuroscience
Place of Event: -
Start-/End Date: 2021-07-06 - 2021-07-07
Invited: Yes

Legal Case

show

Project information

show

Source

show