Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Impact of Structural Observables From Simulations to Predict the Effect of Single-Point Mutations in MHC Class II Peptide Binders

Ochoa, R., Laskowski, R. A., Thornton, J. M., & Cossio, P. (2021). Impact of Structural Observables From Simulations to Predict the Effect of Single-Point Mutations in MHC Class II Peptide Binders. Frontiers in Molecular Biosciences, 8: 636562. doi:10.3389/fmolb.2021.636562.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ochoa, Rodrigo1, 2, Autor
Laskowski, Roman A.2, Autor
Thornton, Janet M.2, Autor
Cossio, Pilar1, 3, Autor                 
Affiliations:
1Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia, ou_persistent22              
2European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom, ou_persistent22              
3Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society, ou_2068292              

Inhalt

einblenden:
ausblenden:
Schlagwörter: binding, MHC class II, simulations, single-point mutation, structural bioinformatics
 Zusammenfassung: The prediction of peptide binders to Major Histocompatibility Complex (MHC) class II receptors is of great interest to study autoimmune diseases and for vaccine development. Most approaches predict the affinities using sequence-based models trained on experimental data and multiple alignments from known peptide substrates. However, detecting activity differences caused by single-point mutations is a challenging task. In this work, we used interactions calculated from simulations to build scoring matrices for quickly estimating binding differences by single-point mutations. We modelled a set of 837 peptides bound to an MHC class II allele, and optimized the sampling of the conformations using the Rosetta backrub method by comparing the results to molecular dynamics simulations. From the dynamic trajectories of each complex, we averaged and compared structural observables for each amino acid at each position of the 9°mer peptide core region. With this information, we generated the scoring-matrices to predict the sign of the binding differences. We then compared the performance of the best scoring-matrix to different computational methodologies that range in computational costs. Overall, the prediction of the activity differences caused by single mutated peptides was lower than 60% for all the methods. However, the developed scoring-matrix in combination with existing methods reports an increase in the performance, up to 86% with a scoring method that uses molecular dynamics.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-12-012021-02-152021-03-30
 Publikationsstatus: Online veröffentlicht
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.3389/fmolb.2021.636562
BibTex Citekey: ochoa_impact_2021
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Frontiers in Molecular Biosciences
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Schweiz : Frontiers Media
Seiten: - Band / Heft: 8 Artikelnummer: 636562 Start- / Endseite: - Identifikator: Anderer: 2296-889X
Anderer: http://www.sherpa.ac.uk/romeo/pub/600/
CoNE: https://pure.mpg.de/cone/journals/resource/2296-889X