Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Complete parameter inference for GW150914 using deep learning

Green, S., & Gair, J. (2021). Complete parameter inference for GW150914 using deep learning. Machine Learning: Science and Technology, 2: 03LT01. doi:10.1088/2632-2153/abfaed.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2008.03312.pdf (Preprint), 985KB
Name:
2008.03312.pdf
Beschreibung:
File downloaded from arXiv at 2021-07-08 07:45
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
Green_2021_Mach._Learn. _Sci._Technol._2_03LT01.pdf (Verlagsversion), 2MB
Name:
Green_2021_Mach._Learn. _Sci._Technol._2_03LT01.pdf
Beschreibung:
Open Access
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Green, Stephen1, Autor           
Gair, Jonathan1, Autor           
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Astrophysics, Instrumentation and Methods for Astrophysics, astro-ph.IM,General Relativity and Quantum Cosmology, gr-qc,Statistics, Machine Learning, stat.ML
 Zusammenfassung: The LIGO and Virgo gravitational-wave observatories have detected many
exciting events over the past five years. As the rate of detections grows with
detector sensitivity, this poses a growing computational challenge for data
analysis. With this in mind, in this work we apply deep learning techniques to
perform fast likelihood-free Bayesian inference for gravitational waves. We
train a neural-network conditional density estimator to model posterior
probability distributions over the full 15-dimensional space of binary black
hole system parameters, given detector strain data from multiple detectors. We
use the method of normalizing flows---specifically, a neural spline normalizing
flow---which allows for rapid sampling and density estimation. Training the
network is likelihood-free, requiring samples from the data generative process,
but no likelihood evaluations. Through training, the network learns a global
set of posteriors: it can generate thousands of independent posterior samples
per second for any strain data consistent with the prior and detector noise
characteristics used for training. By training with the detector noise power
spectral density estimated at the time of GW150914, and conditioning on the
event strain data, we use the neural network to generate accurate posterior
samples consistent with analyses using conventional sampling techniques.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020-08-072021
 Publikationsstatus: Erschienen
 Seiten: 7 pages, 3 figures
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2008.03312
DOI: 10.1088/2632-2153/abfaed
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Machine Learning: Science and Technology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 2 Artikelnummer: 03LT01 Start- / Endseite: - Identifikator: -