Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions.

Krainer, G., Welsh, T. J., Joseph, J. A., Espinosa, J. R., Wittmann, S., Csilléry, E. d., et al. (2021). Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nature communications, 12(1): 1085. doi:10.1038/s41467-021-21181-9.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Krainer, Georg, Autor
Welsh, Timothy J, Autor
Joseph, Jerelle A, Autor
Espinosa, Jorge R, Autor
Wittmann, Sina1, Autor           
Csilléry, Ella de, Autor
Sridhar, Akshay, Autor
Toprakcioglu, Zenon, Autor
Gudiškytė, Giedre, Autor
Czekalska, Magdalena A, Autor
Arter, William E, Autor
Guillén-Boixet, Jordina1, Autor           
Franzmann, Titus1, Autor           
Qamar, Seema, Autor
George-Hyslop, Peter St, Autor
Hyman, Anthony1, Autor           
Collepardo-Guevara, Rosana, Autor
Alberti, Simon1, Autor           
Knowles, Tuomas P J, Autor
Affiliations:
1Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Liquid-liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.

Details

ausblenden:
Sprache(n):
 Datum: 2021-02-17
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41467-021-21181-9
Anderer: cbg-7941
PMID: 33597515
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Nature communications
  Andere : Nat Commun
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 12 (1) Artikelnummer: 1085 Start- / Endseite: - Identifikator: -