English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The nonselective cation channel in the basolateral membrane of rat exocrine pancreas. Inhibition by 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) and activation by stilbene disulfonates

Gögelein, H., & Pfannmüller, B. (1989). The nonselective cation channel in the basolateral membrane of rat exocrine pancreas. Inhibition by 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) and activation by stilbene disulfonates. Pflügers Archiv: European Journal of Physiology, 413(3), 287-298. doi:10.1007/BF00583543.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Gögelein, Heinz1, Author           
Pfannmüller, Bernd1, Author           
Affiliations:
1Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068297              

Content

show
hide
Free keywords: -
 Abstract: Nonselective Ca2+-sensitive cation channels in the basolateral membrane of isolated cells of the rat exocrine pancreas were investigated with the patch clamp technique. With 1.3 mmol/l Ca2+ on the cytosolic side, the mean open state probability Po of one channel was about 0.5. In insideout oriented cell-excised membrane patches the substances diphenylamine-2-carboxylic acid (DPC), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and 3′,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) were applied to the cytosolic side. These compounds inhibited the nonselective cation channels by increasing the mean channel closed time (slow block). 100 μmol/l of NPPB or DPC decreased Po from 0.5 (control conditions) to 0.2 and 0.04, respectively, whereas 100 μmol/l of DCDPC blocked the channel completely. All effects were reversible. 1 mmol/l quinine also reduced Po, but in contrast to the above mentioned substances, it induced fast flickering. Ba2+ (70 mmol/l) and tetraethylammonium (TEA+; 20 mmol/l) had no effects. We investigated also the stilbene disulfonates 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS), 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 4,4′-dinitro-2,2′-stilbenedisulfonate (DNDS). 10 μmol/l SITS applied to the cytosolic side increased Po from 0.5 to 0.7 and with 100 μmol/l SITS the channels remained nearly permanently in its open state (Po≅1). A similar activation of the channels was also observed with DIDS and DNDS. These effects were poorly reversible. The stilbene disulfonates acted by increasing the channel mean open time. When the channel was inactivated by decreasing bath Ca2+ concentration to 0.1 μmol/l, addition of 100 μmol/l of SITS had no effect. Similarly, reducing bath Ca2+ concentration from 1.3 mmol/l in presence of 100 μmol/l SITS (channels are maximally activated) to 0.1 μmol/l, inactivated the channels completely. These results demonstrate, that SITS can only activate the channels in the presence of Ca2+. SITS had no effects, when applied to the extracellular side in outside out patches. In summary, the substances DPC, NPPB and DCDPC inhibit nonselective cation channels, where DCDPC has the most potent and NPPB the smallest effect; whereas SITS, DIDS and DNDS activate the channel when applied from the cytosolic side in the presence of Ca2+ ions.

Details

show
hide
Language(s): eng - English
 Dates: 1989-01-01
 Publication Status: Issued
 Pages: 12
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/BF00583543
PMID: 2541404
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Pflügers Archiv: European Journal of Physiology
  Other : Pflügers Arch. Europ. J. Physiol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Heidelberg : Springer-Verlag
Pages: - Volume / Issue: 413 (3) Sequence Number: - Start / End Page: 287 - 298 Identifier: ISSN: 0031-6768
CoNE: https://pure.mpg.de/cone/journals/resource/954925432380