English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Prediction of Bioconcentration Factors (BCF) using Graph Neural Networks

Sanchez Medina, E. I., Linke, S., & Sundmacher, K. (2021). Prediction of Bioconcentration Factors (BCF) using Graph Neural Networks. In M. Türkay, & R. Gani (Eds.), 31st European Symposium on Computer Aided Process Engineering (pp. 991-997). Amsterdam, Netherlands: Elsevier.

Item is

Basic

show hide
Genre: Conference Paper

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sanchez Medina, Edgar Ivan1, 2, Author              
Linke, Steffen1, 2, Author              
Sundmacher, Kai2, 3, Author              
Affiliations:
1International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738143              
2Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738151              
3Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

Content

show

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show
hide
Title: 31st European Symposium on Computer Aided Process Engineering
Place of Event: Istanbul, Turkey/virtual
Start-/End Date: 2021-06-06 - 2021-06-09

Legal Case

show

Project information

show

Source 1

show
hide
Title: 31st European Symposium on Computer Aided Process Engineering
Source Genre: Proceedings
 Creator(s):
Türkay, Metin, Editor
Gani, Rafiqul, Editor
Affiliations:
-
Publ. Info: Amsterdam, Netherlands : Elsevier
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 991 - 997 Identifier: ISBN: 978-0-323-88506-5

Source 2

show
hide
Title: Computer Aided Chemical Engineering
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 50 Sequence Number: - Start / End Page: - Identifier: ISSN: 1570-7946