Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Magnetic and electrical transport signatures of uncompensated moments in epitaxial thin films of the noncollinear antiferromagnet Mn3Ir

Taylor, J. M., Lesne, E., Markou, A., Dejene, F. K., Sivakumar, P. K., Pöllath, S., et al. (2019). Magnetic and electrical transport signatures of uncompensated moments in epitaxial thin films of the noncollinear antiferromagnet Mn3Ir. Applied Physics Letters, 115(6): 062403. doi:10.1063/1.5099428.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1.5099428.pdf (Verlagsversion), 3MB
 
Datei-Permalink:
-
Name:
1.5099428.pdf
Beschreibung:
Archivkopie
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
2019
Copyright Info:
-
Lizenz:
-
:
14-accepted.pdf (Postprint), 2MB
Name:
14-accepted.pdf
Beschreibung:
-
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
AIP Publishing
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1063/1.5099428 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Taylor, James M.1, Autor
Lesne, Edouard1, Autor
Markou, Anastasios2, Autor
Dejene, Fasil Kidane1, Autor
Sivakumar, Pranava Keerthi1, 3, Autor           
Pöllath, Simon2, Autor
Rana, Kumari Gaurav1, Autor
Kumar, Neeraj1, Autor
Luo, Chen2, Autor
Ryll, Hanjo2, Autor
Radu, Florin2, Autor
Kronast, Florian2, Autor
Werner, Peter1, Autor
Back, Christian H.2, Autor
Felser, Claudia2, Autor
Parkin, Stuart S. P.1, Autor                 
Affiliations:
1Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society, ou_3287476              
2External Organizations, ou_persistent22              
3International Max Planck Research School for Science and Technology of Nano-Systems, Max Planck Institute of Microstructure Physics, Max Planck Society, Weinberg 2, 06120 Halle (Saale), Germany, ou_3399928              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Noncollinear antiferromagnets, with either an L12 cubic crystal lattice (e.g., Mn3Ir and Mn3Pt) or a D019 hexagonal structure (e.g., Mn3Sn and Mn3Ge), exhibit a number of phenomena of interest to topological spintronics. Among the cubic systems, for example, tetragonally distorted Mn3Pt exhibits an intrinsic anomalous Hall effect (AHE). However, Mn3Pt only enters a noncollinear magnetic phase close to the stoichiometric composition and at suitably large thicknesses. Therefore, we turn our attention to Mn3Ir, the material of choice for use in exchange bias heterostructures. In this letter, we investigate the magnetic and electrical transport properties of epitaxially grown, face-centered-cubic γ-Mn3Ir thin films with (111) crystal orientation. Relaxed films of 10 nm thickness exhibit an ordinary Hall effect, with a hole-type carrier concentration of (1.500 ± 0.002) × 1023 cm-3. On the other hand, TEM characterization demonstrates that ultrathin 3 nm films grow with significant in-plane tensile strain. This may explain a small net magnetic moment, observed at low temperatures, shown by X-ray magnetic circular dichroism spectroscopy to arise from uncompensated Mn spins. Being of the order of 0.02 μB/atom, this dominates electrical transport behavior, leading to a small AHE and negative magnetoresistance. These results are discussed in terms of crystal microstructure and chiral domain behavior, with spatially resolved XML(C)D-PEEM supporting the conclusion that small antiferromagnetic domains, <20 nm in size, with differing chirality account for the absence of observed Berry curvature driven magnetotransport effects.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-08-062019-08-05
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/1.5099428
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : Spin Orbitronics for Electronic Technologies (SORBET)
Grant ID : 670166
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Applied Physics Letters
  Kurztitel : Appl. Phys. Lett.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Melville, NY : American Institute of Physics
Seiten: - Band / Heft: 115 (6) Artikelnummer: 062403 Start- / Endseite: - Identifikator: ISSN: 0003-6951
CoNE: https://pure.mpg.de/cone/journals/resource/954922836223