Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Systematic detection of functional proteoform groups from bottom-up proteomic datasets

Bludau, I., Frank, M., Doerig, C., Cai, Y., Heusel, M., Rosenberger, G., et al. (2021). Systematic detection of functional proteoform groups from bottom-up proteomic datasets. Nature Communications, 12(1): 3810. doi:10.1038/s41467-021-24030-x.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Bludau, Isabell1, Autor           
Frank, Max2, Autor
Doerig, Christian2, Autor
Cai, Yujia2, Autor
Heusel, Moritz2, Autor
Rosenberger, George2, Autor
Picotti, Paola2, Autor
Collins, Ben C.2, Autor
Rost, Hannes2, Autor
Aebersold, Ruedi2, Autor
Affiliations:
1Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565159              
2external, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: DATA-INDEPENDENT ACQUISITION; MASS-SPECTROMETRY; PROTEIN; NUCLEOPORIN; QUANTIFICATION; INFERENCE; TMEM106B; DRAFTScience & Technology - Other Topics;
 Zusammenfassung: To a large extent functional diversity in cells is achieved by the expansion of molecular complexity beyond that of the coding genome. Various processes create multiple distinct but related proteins per coding gene - so-called proteoforms - that expand the functional capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics datasets, where peptides instead of intact proteoforms are measured, has remained difficult. Here we present COPF, a tool for COrrelation-based functional ProteoForm assessment in bottom-up proteomics data. It leverages the concept of peptide correlation analysis to systematically assign peptides to co-varying proteoform groups. We show applications of COPF to protein complex co-fractionation data as well as to more typical protein abundance vs. sample data matrices, demonstrating the systematic detection of assembly- and tissue-specific proteoform groups, respectively, in either dataset. We envision that the presented approach lays the foundation for a systematic assessment of proteoforms and their functional implications directly from bottom-up proteomic datasets. Many proteins exist in various proteoforms but detecting these variants by bottom-up proteomics remains difficult. Here, the authors present a computational approach based on peptide correlation analysis to identify and characterize proteoforms from bottom-up proteomics data.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2021
 Publikationsstatus: Online veröffentlicht
 Seiten: 18
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000667248600011
DOI: 10.1038/s41467-021-24030-x
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 12 (1) Artikelnummer: 3810 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723