Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  Atomic Structure and Chemical Composition of Planar Fault Structures in Co-Base Superalloys

Lenz, M., Wu, M., He, J., Makineni, S. K., Gault, B., Raabe, D., et al. (2020). Atomic Structure and Chemical Composition of Planar Fault Structures in Co-Base Superalloys. Minerals, Metals and Materials Series, 920-928.

Item is


show hide
Genre: Conference Paper


show Files




Lenz, Malte1, Author           
Wu, Mingjian1, Author           
He, Junyang2, Author           
Makineni, Surendra Kumar2, Author           
Gault, Baptiste2, Author           
Raabe, Dierk3, Author           
Neumeier, Steffen4, Author           
Spiecker, Erdmann5, Author           
1Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen, Germany, ou_persistent22              
2Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
3Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
4Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science and Engineering, Institute i, Martensstr. 5, 91058 Erlangen, Germany, ou_persistent22              
5Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstr. 6, Erlangen, Germany, ou_persistent22              


Free keywords: Cobalt alloys; Defects; Superalloys, Antiphase boundaries; Chemical compositions; Chemical environment; Creep deformation mechanisms; Deformation mechanism; Partial dislocations; Planar fault energies; Superlattice intrinsic stacking faults, Creep
 Abstract: We report atomic structures and chemical compositions of defects associated to planar faults in a creep deformed Co-base superalloy and discuss their formation and contribution to plastic deformation. The multinary single crystalline Co-base superalloy was creep deformed under tension along [ 001 ] -direction at 850 °C and 400 MPa. The creep microstructure comprises a high density of planar defects. Solute segregation to superlattice intrinsic stacking faults (SISF) is characterized via EDXS analysis of a statistically relevant number of faults and compared at different creep stages. The amount of solute segregation shows negligible difference at different creep stages indicating that segregation directly occurs during planar fault formation and does not significantly evolve afterward. Based on the observation and analysis of Frank partial dislocations with a/3⟨111⟩ Burgers vectors terminating SISF, we discuss a new route to SISF formation via dislocation climb. Additionally, two more complex fault structures are analyzed, and potential formation mechanisms are discussed. The first of these structures is a terminating end of an SISF where an a/3⟨112⟩ partial dislocation splits up into two closely spaced a/6⟨112⟩ partials separated by an SESF. The second structure consists of two parallel SISFs connected by an anti-phase boundary (APB). All deformation mechanisms described in this study show an involvement of solute segregation directly affecting formation and propagation of creep defects by changing planar fault energies and chemical environments of dislocations. Solute segregation is therefore expected to be a key to future alloy design by enabling control of creep deformation mechanisms in specific temperature and stress regimes. © 2020, The Minerals, Metals Materials Society.


Language(s): eng - English
 Dates: 2020
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISBN: 9783030518332
DOI: 10.1007/978-3-030-51834-9_90
 Degree: -


Title: 14th International Symposium on Superalloys, Superalloys 2021
Place of Event: Seven Springs, PA, USA
Start-/End Date: 2021-09-12 - 2021-09-16

Legal Case


Project information


Source 1

Title: Minerals, Metals and Materials Series
Source Genre: Journal
S., Tin1, Editor
M., Hardy1, Editor
J., Clews1, Editor
J., Cormier1, Editor
Q., Feng1, Editor
J., Marcin1, Editor
C., O'Brien1, Editor
A., Suzuki1, Editor
1 Lehrstuhl Für Mikro- und Nanostrukturforschung Center for Nanoanalysis and Electron Microscopy (CENEM), Universität Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany; Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf, 40237, Germany; Friedrich-Alexander-University Erlangen-Nürnberg, Institute for General Materials Properties, Martensstraße 5, Erlangen, 91058, Germany, ou_persistent22            
Publ. Info: Springer Science and Business Media Deutschland GmbH
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 920 - 928 Identifier: ISSN: 23671181