Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Numerical evaluation reveals the effect of branching morphology on vessel transport properties during angiogenesis

Mirzapour-Shafiyi, F., Kametani, Y., Hikita, T., Hasegawa, Y., & Nakayama, M. (2021). Numerical evaluation reveals the effect of branching morphology on vessel transport properties during angiogenesis. PLOS COMPUTATIONAL BIOLOGY, 17(6): e1008398. doi:10.1371/journal.pcbi.1008398.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Mirzapour-Shafiyi, Fatemeh1, Autor           
Kametani, Yukinori, Autor
Hikita, Takao1, Autor           
Hasegawa, Yosuke, Autor
Nakayama, Masanori1, Autor           
Affiliations:
1Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, Max Planck Society, ou_2591702              

Inhalt

ausblenden:
Schlagwörter: ENDOTHELIAL GROWTH-FACTOR; BLOOD-VESSELS; WHOLE-BLOOD; FLOW; ACCUMULATION; DEPENDENCE; VISCOSITY; THERAPY; CANCER; VOLUMEBiochemistry & Molecular Biology; Mathematical & Computational Biology;
 Zusammenfassung: Blood flow governs transport of oxygen and nutrients into tissues. Hypoxic tissues secrete VEGFs to promote angiogenesis during development and in tissue homeostasis. In contrast, tumors enhance pathologic angiogenesis during growth and metastasis, suggesting suppression of tumor angiogenesis could limit tumor growth. In line with these observations, various factors have been identified to control vessel formation in the last decades. However, their impact on the vascular transport properties of oxygen remain elusive. Here, we take a computational approach to examine the effects of vascular branching on blood flow in the growing vasculature. First of all, we reconstruct a 3D vascular model from the 2D confocal images of the growing vasculature at postnatal day 5 (P5) mouse retina, then simulate blood flow in the vasculatures, which are obtained from the gene targeting mouse models causing hypo- or hyper-branching vascular formation. Interestingly, hyper-branching morphology attenuates effective blood flow at the angiogenic front, likely promoting tissue hypoxia. In contrast, vascular hypo-branching enhances blood supply at the angiogenic front of the growing vasculature. Oxygen supply by newly formed blood vessels improves local hypoxia and decreases VEGF expression at the angiogenic front during angiogenesis. Consistent with the simulation results indicating improved blood flow in the hypo-branching vasculature, VEGF expression around the angiogenic front is reduced in those mouse retinas. Conversely, VEGF expression is enhanced in the angiogenic front of hyper-branching vasculature. Our results indicate the importance of detailed flow analysis in evaluating the vascular transport properties of branching morphology of the blood vessels.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2021-06-16
 Publikationsstatus: Online veröffentlicht
 Seiten: 16
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000670603000002
DOI: 10.1371/journal.pcbi.1008398
PMID: 34133418
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: PLOS COMPUTATIONAL BIOLOGY
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA : PUBLIC LIBRARY SCIENCE
Seiten: - Band / Heft: 17 (6) Artikelnummer: e1008398 Start- / Endseite: - Identifikator: ISSN: 1553-734X