English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Wettability of magnetite nanoparticles guides growth from stabilized amorphous ferrihydrite

Kuhrts, L., Prévost, S., Chevrier, D. M., Pekker, P., Späker, O., Egglseder, M., et al. (2021). Wettability of magnetite nanoparticles guides growth from stabilized amorphous ferrihydrite. Journal of the American Chemical Society, 143(29), 10963-10969. doi:10.1021/jacs.1c02687.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 7MB
Name:
Article.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Kuhrts, Lucas1, Author           
Prévost, Sylvain, Author
Chevrier, Daniel M.1, Author
Pekker, Péter, Author
Späker, Oliver2, Author           
Egglseder, Mathias1, Author           
Baumgartner, Jens1, Author           
Pósfai, Mihály, Author
Faivre, Damien1, Author           
Affiliations:
1Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863290              
2Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              

Content

show
hide
Free keywords: -
 Abstract: Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticles with sophistication unmatched by synthetic efforts at ambient conditions. Here, using in situ small-angle X-ray scattering, we demonstrate how the addition of poly(arginine) in the synthetic formation of magnetite nanoparticles induces a biomineralization-reminiscent pathway. The addition of poly(arginine) stabilizes an amorphous ferrihydrite precursor, shifting the magnetite formation pathway from thermodynamic to kinetic control. Altering the energetic landscape of magnetite formation by catalyzing the pH-dependent precursor attachment, we tune magnetite nanoparticle size continuously, exceeding sizes observed in magnetotactic bacteria. This mechanistic shift we uncover here further allows for crystal morphology control by adjusting the pH-dependent interfacial interaction between liquidlike ferrihydrite and nascent magnetite nanoparticles, establishing a new strategy to control nanoparticle morphology. Synthesizing compact single crystals at wetting conditions and unique semicontinuous single-crystalline nanoparticles at dewetting conditions in combination with an improved control over magnetite crystallite size, we demonstrate the versatility of bio-inspired, kinetically controlled nanoparticle formation pathways.

Details

show
hide
Language(s): eng - English
 Dates: 2021-07-152021
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1021/jacs.1c02687
BibTex Citekey: doi:10.1021/jacs.1c02687
Other: M:\BM-Publications\2021\KuhrtsJACS_Wettability
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of the American Chemical Society
  Other : JACS
  Abbreviation : J. Am. Chem. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 143 (29) Sequence Number: - Start / End Page: 10963 - 10969 Identifier: ISSN: 0002-7863