Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Wettability of magnetite nanoparticles guides growth from stabilized amorphous ferrihydrite

Kuhrts, L., Prévost, S., Chevrier, D. M., Pekker, P., Späker, O., Egglseder, M., et al. (2021). Wettability of magnetite nanoparticles guides growth from stabilized amorphous ferrihydrite. Journal of the American Chemical Society, 143(29), 10963-10969. doi:10.1021/jacs.1c02687.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 7MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kuhrts, Lucas1, Autor           
Prévost, Sylvain, Autor
Chevrier, Daniel M.1, Autor
Pekker, Péter, Autor
Späker, Oliver2, Autor           
Egglseder, Mathias1, Autor           
Baumgartner, Jens1, Autor           
Pósfai, Mihály, Autor
Faivre, Damien1, Autor           
Affiliations:
1Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863290              
2Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticles with sophistication unmatched by synthetic efforts at ambient conditions. Here, using in situ small-angle X-ray scattering, we demonstrate how the addition of poly(arginine) in the synthetic formation of magnetite nanoparticles induces a biomineralization-reminiscent pathway. The addition of poly(arginine) stabilizes an amorphous ferrihydrite precursor, shifting the magnetite formation pathway from thermodynamic to kinetic control. Altering the energetic landscape of magnetite formation by catalyzing the pH-dependent precursor attachment, we tune magnetite nanoparticle size continuously, exceeding sizes observed in magnetotactic bacteria. This mechanistic shift we uncover here further allows for crystal morphology control by adjusting the pH-dependent interfacial interaction between liquidlike ferrihydrite and nascent magnetite nanoparticles, establishing a new strategy to control nanoparticle morphology. Synthesizing compact single crystals at wetting conditions and unique semicontinuous single-crystalline nanoparticles at dewetting conditions in combination with an improved control over magnetite crystallite size, we demonstrate the versatility of bio-inspired, kinetically controlled nanoparticle formation pathways.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-07-152021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/jacs.1c02687
BibTex Citekey: doi:10.1021/jacs.1c02687
Anderer: M:\BM-Publications\2021\KuhrtsJACS_Wettability
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of the American Chemical Society
  Andere : JACS
  Kurztitel : J. Am. Chem. Soc.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 143 (29) Artikelnummer: - Start- / Endseite: 10963 - 10969 Identifikator: ISSN: 0002-7863