Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  On star-convex volumes in 2-D hydrodynamical flows and their relevance for coherent transport

Lünsmann, B., & Kantz, H. (2020). On star-convex volumes in 2-D hydrodynamical flows and their relevance for coherent transport. Chaos, 30(12): 123147. doi:10.1063/5.0028100.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Lünsmann, Benedict1, Autor           
Kantz, Holger1, Autor           
Affiliations:
1Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPIPKS: Deterministic dynamics
 Zusammenfassung: Oceanic surface flows are dominated by finite-time mesoscale structures that separate two-dimensional flows into volumes of qualitatively different dynamical behavior. Among these, the transport boundaries around eddies are of particular interest since the enclosed volumes show a notable stability with respect to filamentation while being transported over significant distances with consequences for a multitude of different oceanic phenomena. In this paper, we present a novel method to analyze coherent transport in oceanic flows. The presented approach is purely based on convexity and aims to uncover maximal persistently star-convex (MPSC) volumes, volumes that remain star-convex with respect to a chosen reference point during a predefined time window. Since these volumes do not generate filaments, they constitute a sub-class of finite-time coherent volumes. The new perspective yields definitions for filaments, which enables the study of MPSC volume formation and dissipation. We discuss the underlying theory and present an algorithm, the material star-convex structure search, that yields comprehensible and intuitive results. In addition, we apply our method to different velocity fields and illustrate the usefulness of the method for interdisciplinary research by studying the generation of filaments in a real-world example.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020-12-282020-12-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000604142000005
DOI: 10.1063/5.0028100
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
  Andere : Chaos : an interdisciplinary journal of nonlinear science
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Institute of Physics
Seiten: - Band / Heft: 30 (12) Artikelnummer: 123147 Start- / Endseite: - Identifikator: ISSN: 1054-1500
CoNE: https://pure.mpg.de/cone/journals/resource/954922836228