English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Super-resolution imaging of highly curved membrane structures in giant vesicles encapsulating molecular condensates

Zhao, Z., Roy, D., Steinkühler, J., Robinson, T., Lipowsky, R., & Dimova, R. (2022). Super-resolution imaging of highly curved membrane structures in giant vesicles encapsulating molecular condensates. Advanced Materials, 34(4): 2106633. doi:10.1002/adma.202106633.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Article.pdf (Publisher version), 3MB
Name:
Article.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Zhao, Ziliang1, Author           
Roy, Debjit1, Author
Steinkühler, Jan1, Author           
Robinson, Tom2, Author           
Lipowsky, Reinhard3, Author           
Dimova, Rumiana1, Author           
Affiliations:
1Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863328              
2Tom Robinson, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2288691              
3Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863327              

Content

show
hide
Free keywords: aqueous two-phase systems (ATPSs); giant unilamellar vesicles (GUVs); membrane nanotubes; microfluidics; polymers; spontaneous curvature; stimulated emission depletion (STED)
 Abstract: Molecular crowding is an inherent feature of the cell interior. Synthetic cells as provided by giant unilamellar vesicles (GUVs) encapsulating macromolecules (polyethylene-glycol and dextran) represent an excellent mimetic system to study membrane transformations associated with molecular crowding and protein condensation. Similarly to cells, such GUVs loaded with macromolecules exhibit highly curved structures such as internal nanotubes. In addition, upon liquid-liquid phase separation as inside living cells, the membrane of GUVs encapsulating an aqueous two-phase system deforms to form apparent kinks at the contact line of the interface between the two aqueous phases. These structures, nanotubes and kinks, have dimensions below optical resolution and if resolved, can provide information about material properties such as membrane spontaneous curvature and intrinsic contact angle describing the wettability contrast of the encapsulated phases to the membrane. Previous experimental studies were based on conventional optical microscopy which cannot resolve these membrane and wetting properties. Here, we studied these structures with super-resolution microscopy, namely stimulated emission depletion (STED) microscopy, together with microfluidic manipulation. We demonstrate the cylindrical nature of the nanotubes with unprecedented detail based on the superior resolution of STED and automated data analysis. The spontaneous curvature deduced from the nanotube diameters is in excellent agreement with theoretical predictions. Furthermore, we were able to resolve the membrane “kink” structure as a smoothly curved membrane demonstrating the existence of the intrinsic contact angle. We find very good agreement between the directly measured values and the theoretically predicted ones based on the apparent contact angles on the micrometer scale. During different stages of cellular events, biomembranes undergo a variety of shape transformations such as the formation of buds and nanotubes regulated by membrane necks. We demonstrate that these highly curved membrane structures are amenable to STED imaging and show that such studies provide important insights in the membrane properties and interactions underlying cellular activities.

Details

show
hide
Language(s): eng - English
 Dates: 2021-10-282022
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/adma.202106633
DOI: 10.1101/2021.08.04.455034
BibTex Citekey: Zhao2021.08.04.455034
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advanced Materials
  Other : Adv. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 34 (4) Sequence Number: 2106633 Start / End Page: - Identifier: ISSN: 0935-9648

Source 2

show
hide
Title: bioRxiv
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cold Spring Harbor : Cold Spring Harbor Laboratory
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ZDB: 2766415-6