English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

Ilbert, O., de la Torre, S., Martinet, N., Wright, A. H., Paltani, S., Laigle, C., et al. (2021). Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography. Astronomy and Astrophysics, 647: A117. doi:10.1051/0004-6361/202040237.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Euclid preparation XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
Euclid preparation XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Ilbert, O., Author
de la Torre, S., Author
Martinet, N., Author
Wright, A. H., Author
Paltani, S., Author
Laigle, C., Author
Davidzon, I., Author
Jullo, E., Author
Hildebrandt, H., Author
Masters, D. C., Author
Amara, A., Author
Conselice, C. J., Author
Andreon, S., Author
Auricchio, N., Author
Azzollini, R., Author
Baccigalupi, C., Author
Balaguera-Antolínez, A., Author
Baldi, M., Author
Balestra, A., Author
Bardelli, S., Author
Bender, R.1, Author              Biviano, A., AuthorBodendorf, C.1, Author              Bonino, D., AuthorBorgani, S., AuthorBoucaud, A., AuthorBozzo, E., AuthorBranchini, E., AuthorBrescia, M., AuthorBurigana, C., AuthorCabanac, R., AuthorCamera, S., AuthorCapobianco, V., AuthorCappi, A., AuthorCarbone, C., AuthorCarretero, J., AuthorCarvalho, C. S., AuthorCasas, S., AuthorCastander, F. J., AuthorCastellano, M., AuthorCastignani, G., AuthorCavuoti, S., AuthorCimatti, A., AuthorCledassou, R., AuthorColodro-Conde, C., AuthorCongedo, G., AuthorConversi, L., AuthorCopin, Y., AuthorCorcione, L., AuthorCostille, A., AuthorCoupon, J., AuthorCourtois, H. M., AuthorCropper, M., AuthorCuby, J., AuthorSilva, A. Da, AuthorDegaudenzi, H., AuthorFerdinando, D. Di, AuthorDubath, F., AuthorDuncan, C., AuthorDupac, X., AuthorDusini, S., AuthorEalet, A., AuthorFabricius, M.1, Author              Farrens, S., AuthorFerreira, P. G., AuthorFinelli, F., AuthorFosalba, P., AuthorFotopoulou, S., AuthorFranceschi, E., AuthorFranzetti, P., AuthorGaleotta, S., AuthorGarilli, B., AuthorGillard, W., AuthorGillis, B., AuthorGiocoli, C., AuthorGozaliasl, G., AuthorGraciá-Carpio, J.2, Author              Grupp, F.1, Author              Guzzo, L., AuthorHaugan, S. V. H., AuthorHolmes, W., AuthorHormuth, F., AuthorJahnke, K., AuthorKeihanen, E., AuthorKermiche, S., AuthorKiessling, A., AuthorKirkpatrick, C. C., AuthorKunz, M., AuthorKurki-Suonio, H., AuthorLigori, S., AuthorLilje, P. B., AuthorLloro, I., AuthorMaino, D., AuthorMaiorano, E., AuthorMarggraf, O., AuthorMarkovic, K., AuthorMarulli, F., AuthorMassey, R., AuthorMaturi, M., AuthorMauri, N., AuthorMaurogordato, S., AuthorMcCracken, H. J., AuthorMedinaceli, E., AuthorMei, S., AuthorMetcalf, R. Benton, AuthorMoresco, M., AuthorMorin, B., AuthorMoscardini, L., AuthorMunari, E., AuthorNakajima, R., AuthorNeissner, C., AuthorNiemi, S., AuthorNightingale, J., AuthorPadilla, C., AuthorPasian, F., AuthorPatrizii, L., AuthorPedersen, K., AuthorPello, R., AuthorPettorino, V., AuthorPires, S., AuthorPolenta, G., AuthorPoncet, M., AuthorPopa, L., AuthorPotter, D., AuthorPozzetti, L., AuthorRaison, F.1, Author              Renzi, A., AuthorRhodes, J., AuthorRiccio, G., AuthorRomelli, E., AuthorRoncarelli, M., AuthorRossetti, E., AuthorSaglia, R.1, Author              Sanchez, A. G.1, Author              Sapone, D., AuthorSchneider, P., AuthorSchrabback, T., AuthorScottez, V., AuthorSecroun, A., AuthorSeidel, G., AuthorSerrano, S., AuthorSirignano, C., AuthorSirri, G., AuthorStanco, L., AuthorSureau, F., AuthorCrespá, P. Tallada, AuthorTenti, M., AuthorTeplitz, H. I., AuthorTereno, I., AuthorToledo-Moreo, R., AuthorTorradeflot, F., AuthorTramacere, A., AuthorValentijn, E. A., AuthorValenziano, L., AuthorValiviita, J., AuthorVassallo, T., AuthorWang, Y., AuthorWelikala, N., AuthorWeller, J.1, Author              Whittaker, L., AuthorZacchei, A., AuthorZamorani, G., AuthorZoubian, J., AuthorZucca, E., Author more..
Affiliations:
1Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society, ou_159895              
2Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society, ou_159889              

Content

show
hide
Free keywords: -
 Abstract: The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift ⟨z⟩. We investigate the possibility of measuring ⟨z⟩ with an accuracy better than 0.002 (1 + z) in ten tomographic bins spanning the redshift interval 0.2 < z < 2.2, the requirements for the cosmic shear analysis of Euclid. We implement a sufficiently realistic simulation in order to understand the advantages and complementarity, as well as the shortcomings, of two standard approaches: the direct calibration of ⟨z⟩ with a dedicated spectroscopic sample and the combination of the photometric redshift probability distribution functions (zPDFs) of individual galaxies. We base our study on the Horizon-AGN hydrodynamical simulation, which we analyse with a standard galaxy spectral energy distribution template-fitting code. Such a procedure produces photometric redshifts with realistic biases, precisions, and failure rates. We find that the current Euclid design for direct calibration is sufficiently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an extremely high level of > 99.8%. The zPDF approach can also be successful if the zPDF is de-biased using a spectroscopic training sample. This approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450).

Details

show
hide
Language(s): eng - English
 Dates: 2021-03-18
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1051/0004-6361/202040237
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: France : EDP Sciences S A
Pages: - Volume / Issue: 647 Sequence Number: A117 Start / End Page: - Identifier: ISSN: 1432-0746
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1