Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Implicit solvation in domain based pair natural orbital coupled cluster (DLPNO-CCSD) theory

Garcia-Ratés, M., Becker, U., & Neese, F. (2021). Implicit solvation in domain based pair natural orbital coupled cluster (DLPNO-CCSD) theory. Journal of Computational Chemistry, 42(27), 1959-1973. doi:10.1002/jcc.26726.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Garcia-Ratés, Miquel1, Autor           
Becker, Ute2, Autor           
Neese, Frank3, Autor           
Affiliations:
1Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541711              
2Research Group Wennmohs, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541706              
3Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Inhalt

ausblenden:
Schlagwörter: coupled-cluster; C-PCM; DLPNO; implicit solvation
 Zusammenfassung: A nearly linear scaling implementation of coupled-cluster with singles and doubles excitations (CCSD) can be achieved by means of the domain-based local pair natural orbital (DLPNO) method. The combination of DLPNO-CCSD with implicit solvation methods allows the calculation of accurate energies and chemical properties of solvated systems at an affordable computational cost. We have efficiently implemented different schemes within the conductor-like polarizable continuum model (C-PCM) for DLPNO-CCSD in the ORCA quantum chemistry suite. In our implementation, the overhead due to the additional solvent terms amounts to less than 5% of the time the equivalent gas phase job takes. Our results for organic neutrals and open-shell ions in water show that for most systems, adding solvation terms to the coupled-cluster amplitudes equations and to the energy leads to small changes in the total energy compared to only considering solvated orbitals and corrections to the reference energy. However, when the solute contains certain functional groups, such as carbonyl or nitrile groups, the changes in the energy are larger and estimated to be around 0.04 and 0.02 kcal/mol for each carbonyl and nitrile group in the solute, respectively. For solutes containing metals, the use of accurate CC/C-PCM schemes is crucial to account for correlation solvation effects. Simultaneously, we have calculated the electrostatic component of the solvation energy for neutrals and ions in water for the different DLPNO-CCSD/C-PCM schemes. We observe negligible changes in the deviation between DLPNO-CCSD and canonical-CCSD data. Here, DLPNO-CCSD results outperform those for Hartree-Fock and density functional theory calculations.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2021-07-082021-05-062021-07-142021-08-042021-10-15
 Publikationsstatus: Erschienen
 Seiten: 15
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/jcc.26726
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Journal of Computational Chemistry
  Kurztitel : J. Comput. Chem.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : Wiley
Seiten: - Band / Heft: 42 (27) Artikelnummer: - Start- / Endseite: 1959 - 1973 Identifikator: ISSN: 0192-8651
CoNE: https://pure.mpg.de/cone/journals/resource/954925489848