Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Hydrophobic Effects on a Molecular Scale

Hummer, G., Garde, S., Garcia, A. E., Paulaitis, M. E., & Pratt, L. R. (1998). Hydrophobic Effects on a Molecular Scale. The Journal of Physical Chemistry B, 102, 10469-10489. doi:10.1021/jp982873+.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Hummer, G.1, Autor           
Garde, S.2, Autor
Garcia, A. E.2, Autor
Paulaitis, M. E.2, Autor
Pratt, L. R.2, Autor
Affiliations:
1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, ou_persistent22              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Solution chemistry, Thermodynamic properties, Hydrophobicity, Solvents, Cavities
 Zusammenfassung: A theoretical approach is developed to quantify hydrophobic hydration and interactions on a molecular scale, with the goal of insight into the molecular origins of hydrophobic effects. The model is based on the fundamental relation between the probability for cavity formation in bulk water resulting from molecular-scale density fluctuations and the hydration free energy of the simplest hydrophobic solutes, hard particles. This probability is estimated using an information theory (IT) approach, incorporating experimentally available properties of bulk water:  the density and radial distribution function. The IT approach reproduces the simplest hydrophobic effects:  hydration of spherical nonpolar solutes, the potential of mean force (PMF) between methane molecules, and solvent contributions to the torsional equilibrium of butane. Applications of this approach to study temperature and pressure effects provide new insights into the thermodynamics and kinetics of protein folding. The IT model relates the hydrophobic-entropy convergence observed in protein unfolding experiments to the macroscopic isothermal compressibility of water. A novel explanation for pressure denaturation of proteins follows from an analysis of the pressure stability of hydrophobic aggregates, suggesting that water penetrates the hydrophobic core of proteins at high pressures. This resolves a long-standing puzzle, whether pressure denaturation contradicts the hydrophobic-core model of protein stability. Finally, issues of “dewetting” of molecularly large nonpolar solutes are discussed in the context of a recently developed perturbation theory approach.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 1998-07-021998-09-251998-11-241998-12-17
 Publikationsstatus: Erschienen
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/jp982873+
BibTex Citekey: wikstrom_oxygen_1999
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Physical Chemistry B
  Kurztitel : J. Phys. Chem. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: - Band / Heft: 102 Artikelnummer: - Start- / Endseite: 10469 - 10489 Identifikator: ISSN: 1520-6106
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000293370_1