Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
 ZurückNächste 
  Functional Fluorescence Microscopy Imaging: Quantitative Scanning-Free Confocal Fluorescence Microscopy for the Characterization of Fast Dynamic Processes in Live Cells.

Krmpot, A. J., Nikolić, S. N., Oasa, S., Papadopoulos, D., Vitali, M., Oura, M., et al. (2019). Functional Fluorescence Microscopy Imaging: Quantitative Scanning-Free Confocal Fluorescence Microscopy for the Characterization of Fast Dynamic Processes in Live Cells. Analytical chemistry, 91(17), 11129-11137. doi:10.1021/acs.analchem.9b01813.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Krmpot, Aleksandar J, Autor
Nikolić, Stanko N, Autor
Oasa, Sho, Autor
Papadopoulos, Dimitrios1, Autor           
Vitali, Marco, Autor
Oura, Makoto, Autor
Mikuni, Shintaro, Autor
Thyberg, Per, Autor
Tisa, Simone, Autor
Kinjo, Masataka, Autor
Nilsson, Lennart, Autor
Terenius, Lars, Autor
Rigler, Rudolf, Autor
Vukojević, Vladana, Autor
Affiliations:
1Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Functional fluorescence microscopy imaging (fFMI), a time-resolved (21 μs/frame) confocal fluorescence microscopy imaging technique without scanning, is developed for quantitative characterization of fast reaction-transport processes in solution and in live cells. The method is based on massively parallel fluorescence correlation spectroscopy (FCS). Simultaneous excitation of fluorescent molecules in multiple spots in the focal plane is achieved using a diffractive optical element (DOE). Fluorescence from the DOE-generated 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector comprising 32 × 32 single-photon avalanche photodiodes (SPADs). Software for data acquisition and fast auto- and cross-correlation analysis by parallel signal processing using a graphic processing unit (GPU) allows temporal autocorrelation across all pixels in the image frame in 4 s and cross-correlation between first- and second-order neighbor pixels in 45 s. We present here this quantitative, time-resolved imaging method with single-molecule sensitivity and demonstrate its usefulness for mapping in live cell location-specific differences in the concentration and translational diffusion of molecules in different subcellular compartments. In particular, we show that molecules without a specific biological function, e.g., the enhanced green fluorescent protein (eGFP), exhibit uniform diffusion. In contrast, molecules that perform specialized biological functions and bind specifically to their molecular targets show location-specific differences in their concentration and diffusion, exemplified here for two transcription factor molecules, the glucocorticoid receptor (GR) before and after nuclear translocation and the Sex combs reduced (Scr) transcription factor in the salivary gland of Drosophila ex vivo.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-09-03
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acs.analchem.9b01813
Anderer: cbg-8149
PMID: 31364842
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Analytical chemistry
  Andere : Anal Chem
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 91 (17) Artikelnummer: - Start- / Endseite: 11129 - 11137 Identifikator: -