English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Transition Metal-Carbon Bond Enthalpies as Descriptor for the Electrochemical Stability of Transition Metal Carbides in Electrocatalytic Applications

Göhl, D., Rueß, H., Pander, M., Žeradjanin, A. R., Mayrhofer, K. J. J., Schneider, J. M., et al. (2020). Transition Metal-Carbon Bond Enthalpies as Descriptor for the Electrochemical Stability of Transition Metal Carbides in Electrocatalytic Applications. Journal of the Electrochemical Society, 167(2): 021501. doi:10.1149/1945-7111/ab632c.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Transition Metal—Carbon Bond Enthalpies as Descriptor for theElectrochemical Stability of Transition Metal Carbides in ElectrocatalyticApplications.pdf (Publisher version), 3MB
Name:
Transition Metal—Carbon Bond Enthalpies as Descriptor for theElectrochemical Stability of Transition Metal Carbides in ElectrocatalyticApplications.pdf
Description:
Open Access
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2020
Copyright Info:
The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited

Locators

show

Creators

show
hide
 Creators:
Göhl, Daniel1, Author           
Rueß, Holger2, Author           
Pander, Marc3, Author           
Žeradjanin, Aleksandar R.1, 4, Author           
Mayrhofer, Karl Johann Jakob1, 5, 6, Author           
Schneider, Jochen Michael7, Author           
Erbe, Andreas3, 8, Author           
Ledendecker, Marc1, Author           
Affiliations:
1Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
2Materials Chemistry, RWTH Aachen University, Kopernikusstraße 10, 52074 Aachen, Germany, ou_persistent22              
3Interface Spectroscopy, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863358              
4Universität Bremen, Energiespeicher- und Energiewandlersysteme, Bibliothekstr. 1, Bremen, Germany, ou_persistent22              
5Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany, ou_persistent22              
6Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany, ou_persistent22              
7Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Germany, ou_persistent22              
8Department of Materials Science and Engineering, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Transition metal carbides are used for various applications such as hard coating, heterogeneous catalysis, catalyst support material or coatings in fuel cell applications. However, little is known about the stability of their electrochemically active surface in aqueous electrolytes. Herein, the transition metal—carbon bond enthalpy is proposed as stability criterion for various transition metal carbides. The basis is an oxidation mechanism where the rate determining step is the metal—carbon bond cleavage under acidic conditions which was supported by a detailed corrosion study on hexagonal tungsten carbide. In situ flow cell measurements that were coupled to an inductively coupled plasma mass spectrometer corroborated experimentally the linear dependency of the oxidation overpotential on the transition metal—carbon bond enthalpy. The proposed model allows the estimation of the activation overpotential for electrochemical carbide oxidation resulting in a maximized stabilization for carbides in the 4th group (Ti, Zr, Hf). Together with the calculated thermodynamic oxidation potentials, TiC and VC exhibit the highest experimental oxidation potentials (0.85 VRHE). The model can be used for preselecting possible carbide materials for various electrochemical reactions.

Details

show
hide
Language(s): eng - English
 Dates: 2020-01-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1149/1945-7111/ab632c
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of the Electrochemical Society
  Abbreviation : J. Electrochem. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY, USA : Electrochemical Society
Pages: - Volume / Issue: 167 (2) Sequence Number: 021501 Start / End Page: - Identifier: ISSN: 0013-4651
CoNE: https://pure.mpg.de/cone/journals/resource/991042748197686