Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Ion association in hydrothermal aqueous NaCl solutions: implications for the microscopic structure of supercritical water

Elbers, M., Schmidt, C., Sternemann, C., Sahle, C. J., Jahn, S., Albers, C., et al. (2021). Ion association in hydrothermal aqueous NaCl solutions: implications for the microscopic structure of supercritical water. Physical Chemistry Chemical Physics, 23, 14845-14856. doi:10.1039/D1CP01490K.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Elbers, Mirko1, Autor
Schmidt, Christian1, Autor
Sternemann, Christian1, Autor
Sahle, Christoph J.1, Autor
Jahn, Sandro1, Autor
Albers, Christian1, Autor
Sakrowski, Robin1, Autor
Gretarsson, Hlynur2, Autor           
Sundermann, Martin2, Autor           
Tolan, Metin1, Autor
Wilke, Max1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863445              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Alkali halides, Hydrogen bonds, Molecular structure, Oxygen, Sodium chloride, Sodium hydroxide, Aqueous NaCl solutions, Hydrogen bond networks, Microscopic structures, Pressure and temperature, Simulated trajectories, Structural information, Supercritical condition, Temperature-dependent changes, Ions
 Zusammenfassung: Knowledge of the microscopic structure of fluids and changes thereof with pressure and temperature is important for the understanding of chemistry and geochemical processes. In this work we investigate the influence of sodium chloride on the hydrogen-bond network in aqueous solution up to supercritical conditions. A combination ofin situX-ray Raman scattering andab initiomolecular dynamics simulations is used to probe the oxygen K-edge of the alkali halide aqueous solution in order to obtain unique information about the oxygen's local coordination around the ions,e.g.solvation-shell structure and the influence of ion pairing. The measured spectra exhibit systematic temperature dependent changes, which are entirely reproduced by calculations on the basis of structural snapshots obtainedvia ab initiomolecular dynamics simulations. Analysis of the simulated trajectories allowed us to extract detailed structural information. This combined analysis reveals a net destabilizing effect of the dissolved ions which is reduced with rising temperature. The observed increased formation of contact ion pairs and occurrence of larger polyatomic clusters at higher temperatures can be identified as a driving force behind the increasing structural similarity between the salt solution and pure water at elevated temperatures and pressures with drawback on the role of hydrogen bonding in the hot fluid. We discuss our findings in view of recent results on hot NaOH and HCl aqueous fluids and emphasize the importance of ion pairing in the interpretation of the microscopic structure of water. © the Owner Societies 2021.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-06-222021-06-22
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1039/D1CP01490K
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Chemistry Chemical Physics
  Kurztitel : Phys. Chem. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, England : Royal Society of Chemistry
Seiten: - Band / Heft: 23 Artikelnummer: - Start- / Endseite: 14845 - 14856 Identifikator: ISSN: 1463-9076
CoNE: https://pure.mpg.de/cone/journals/resource/954925272413_1