Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Bioinspired functionally graded composite assembled using cellulose nanocrystals and genetically engineered proteins with controlled biomineralization

Mohammadi, P., Gandier, J.-A., Nonappa, Wagermaier, W., Miserez, A., & Penttilä, M. (2021). Bioinspired functionally graded composite assembled using cellulose nanocrystals and genetically engineered proteins with controlled biomineralization. Advanced Materials, 33(42): 2102658. doi:10.1002/adma.202102658.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 5MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Mohammadi, Pezhman, Autor
Gandier, Julie-Anne, Autor
Nonappa, Autor
Wagermaier, Wolfgang1, Autor           
Miserez, Ali, Autor
Penttilä, Merja, Autor
Affiliations:
1Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              

Inhalt

einblenden:
ausblenden:
Schlagwörter: biomaterials, biomineralization, cellulose nanocrystals, dental implants, functional gradients, phase separation, protein engineering
 Zusammenfassung: Nature provides unique insights into design strategies evolved by living organisms to construct robust materials with a combination of mechanical properties that are challenging to replicate synthetically. Hereby, inspired by the impact-resistant dactyl club of the stomatopod, a mineralized biocomposite is rationally designed and produced in the complex shapes of dental implant crowns exhibiting high strength, stiffness, and fracture toughness. This material consists of an expanded helicoidal organization of cellulose nanocrystals (CNCs) mixed with genetically engineered proteins that regulate both binding to CNCs and in situ growth of reinforcing apatite crystals. Critically, the structural properties emerge from controlled self-assembly across multiple length scales regulated by rational engineering and phase separation of the protein components. This work replicates multiscale biomanufacturing of a model biological material and also offers an innovative platform to synthesize multifunctional biocomposites whose properties can be finely regulated by colloidal self-assembly and engineering of its constitutive protein building blocks.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-09-012021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/adma.202102658
BibTex Citekey: https://doi.org/10.1002/adma.202102658
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Materials
  Andere : Adv. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH
Seiten: - Band / Heft: 33 (42) Artikelnummer: 2102658 Start- / Endseite: - Identifikator: ISSN: 0935-9648