English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Characterization of oxygen phases created during oxidation of Ru(0001)

Böttcher, A., Conrad, H., & Niehus, H. (2000). Characterization of oxygen phases created during oxidation of Ru(0001). The Journal of Chemical Physics, 112(10), 4779-4787. doi:10.1063/1.481034.

Item is

Files

show Files
hide Files
:
1.481034.pdf (Publisher version), 615KB
Name:
1.481034.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2000
Copyright Info:
AIP
License:
-

Locators

show

Creators

show
hide
 Creators:
Böttcher, Artur1, Author           
Conrad, Horst1, Author           
Niehus, Horst2, Author
Affiliations:
1Fritz Haber Institute, Max Planck Society, ou_24021              
2Institut für Physik der Humboldt-Universität, Invalidenstr. 110, 10115 Berlin, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Thermal desorption spectroscopy, ultraviolet photoelectron spectroscopy, low energy electron diffraction (LEED), and the reactive scattering of a CO molecular beam have been applied to determine the relationship between the formation of the subsurface oxygen phase and the growth of
oxides during oxidation of Ru(0001). Emission of RuOx (x<4) molecules observed in the thermal
desorption spectra during the heating of the oxygen-rich sample has been used as a simple measure for the presence of bulk oxides. When performing the oxygen exposure at a temperature lower than
the onset for oxygen desorption (Tp<850 K) a mobile atomic oxygen species is predominantly
formed in the subsurface region. The conversion of these subsurface oxygen atoms into a regular
RuxOy phase takes place within the temperature region of 900–1150 K. The growth of oxide films
becomes the dominating reaction channel when performing the oxidation at temperatures higher than the onset for oxygen desorption. The oxide formation is strongly reduced when conducting the
oxidation at temperatures higher than 1250 K. In this case only a relatively low amount of oxygen atoms adsorbed on the bare Ru surface can be achieved, neither oxides nor subsurface oxygen have been found. The presence of a RuO2 coating layer manifests itself by LEED patterns characteristic for a particular RuO2 single crystal face as well as by additional features in the valence ultraviolet photoelectron spectra. The oxidation of CO molecules reactively scattered at these oxygen-rich surfaces proceeds as long as mobile oxygen atoms are present in the subsurface region. The reaction is entirely quenched when the subsurface oxygen is replaced by an uniform film of RuO2.

Details

show
hide
Language(s): eng - English
 Dates: 1999-09-211999-12-162000-03-08
 Publication Status: Issued
 Pages: 9
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1063/1.481034
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Chemical Physics
  Abbreviation : J. Chem. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Institute of Physics
Pages: 9 Volume / Issue: 112 (10) Sequence Number: - Start / End Page: 4779 - 4787 Identifier: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226