Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Evaluating the dynamical state of the visual brain during optic flow noise processing in zebrafish

Yang, I., Zeraati, R., Zhang, Y., Arrenberg, A., & Levina, A. (2021). Evaluating the dynamical state of the visual brain during optic flow noise processing in zebrafish. Poster presented at Bernstein Conference 2021. doi:10.12751/nncn.bc2021.p097.

Item is

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Yang, I, Autor
Zeraati, R1, Autor           
Zhang, Y, Autor
Arrenberg, AB, Autor
Levina, A1, Autor           
Affiliations:
1Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3505519              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung:

Neural networks working near criticality (a transition point between ordered and chaotic states) have been demonstrated to possess optimized information processing capabilities [1,2]. One way to assess criticality in neural networks is to study spatiotemporal patterns of activity propagations known as neuronal avalanches. At criticality, the avalanche sizes follow a power-law distribution up to a cutoff approximately at the system size [3]. The conventional method of detecting avalanches assumes they are separated in time. However, in large-scale recordings where many avalanches happen in parallel, this method cannot be applied. To asses the state of the system in such a case, one can use a cluster-based avalanche detection that can spatially segregate parallel avalanches assuming they propagate locally [4]. This method revealed that the zebrafish larvae brain operates close to criticality in the absence of stimulus and is transiently displaced to a slightly more ordered regime upon presenting moving grating [5]. However, how more complex stimuli change the brain state of the zebrafish larvae is unknown.

Here, we apply cluster-based avalanche detection to larval zebrafish pretectum calcium imaging data, which was obtained during the presentation of contiguous motion noise visual stimuli [6]. We assume that each neuron is locally connected to other neurons within a detection-radius. We find that choice of the detection-radius largely influences the avalanche-size distributions (Fig A), and only some radii give rise to power-law distributions extending to system size (Fig B).

To understand the effect of neighborhood definition on observed avalanches, we simulate a branching network model [7] with local connections and generate parallel avalanches by injecting random stimuli at multiple sites. At criticality, the avalanche-size distributions are independent of the detection-radius and exhibit power-law distributions extending beyond the system size (Fig C). On the other hand, at the subcritical regime, avalanche-size distributions strongly depend on the detection-radius, though some power-laws can still be observed (Fig D). These results suggest that measuring the divergence of distributions under different choices of neighborhood provides additional insights in assessing the state of neural networks when the connectivity structure is unknown. They also propose that under complex visual stimuli the zebrafish larvae brain exhibits subcritical dynamics.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-09
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.12751/nncn.bc2021.p097
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Bernstein Conference 2021
Veranstaltungsort: -
Start-/Enddatum: 2021-09-21 - 2021-09-24

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Bernstein Conference 2021
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: P 97 Start- / Endseite: - Identifikator: -