Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A flow-based latent state generative model of neural population responses to natural images

Bashiri, M., Walker, E., Lurz, K.-K., Jagadish, A., Muhammad, T., Ding, Z., et al. (2021). A flow-based latent state generative model of neural population responses to natural images. Poster presented at Bernstein Conference 2021. doi:10.12751/nncn.bc2021.p047.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bashiri, M, Autor
Walker, EY, Autor
Lurz, K-K, Autor
Jagadish, AK1, 2, Autor           
Muhammad, T, Autor
Ding, Z, Autor
Tolias, AS, Autor           
Sinz, FH, Autor           
Affiliations:
1Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3189356              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Characterizing the activity of sensory neurons is a major goal of neural system identification. While neural responses in the visual cortex vary with visual stimuli, they also exhibit significant variability even to the repeated presentations of identical stimuli. This stimulus-conditioned variability has significant and sophisticated correlations commonly referred to as noise correlations and exhibits dependency on various factors such as the stimulus, the behavioral task, attention, and the general brain state. Understanding the nature of this correlated variability and its functional implication in the processing of sensory stimuli requires models that account for both stimulus-driven and shared stimulus-conditioned variability. However, existing models for these two major components of neural variability have been developed largely independently. Here, we close this gap and present a joint deep neural system identification model that accounts for both stimulus-driven and shared stimulus-conditioned variability. To this end, we combine (1) state-of-the-art deep networks for stimulus-driven activity and (2) a flexible, normalizing flow-based generative model to capture the stimulus-conditioned variability. We trained the model end-to-end using the activity of thousands of neurons from multiple areas of the mouse visual cortex in response to thousands of natural images. We show that our model outperforms previous state-of-the-art models in predicting distribution of neuronal population responses to individual natural images including changes in the form of the population response distribution as a function of the stimulus. Furthermore, it learns interesting latent factors of the population response including factors that capture behavioral variables such as pupil dilation, and other factors that vary systematically with brain area or retinotopic location. Overall, our model accurately accounts for two critical sources of neural variability while avoiding several complexities associated with many existing latent variable models. It thus provides a useful tool for uncovering the interplay between different factors that contribute to variability in neural activity.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-09
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.12751/nncn.bc2021.p047
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Bernstein Conference 2021
Veranstaltungsort: -
Start-/Enddatum: 2021-09-21 - 2021-09-24

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Bernstein Conference 2021
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: P 47 Start- / Endseite: - Identifikator: -