English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination

Vincenzi, M., Sullivan, ‹. M., Graur, O., Brout, D., Davis, T. M., Frohmaier, C., et al. (2021). The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination. Monthly Notices of the Royal Astronomical Society, 505(2), 2819-2839. doi:10.1093/mnras/stab1353.

Item is

Files

show Files
hide Files
:
The Dark Energy Survey supernova programme modelling selection efficiency and observed core-collapse supernova contamination.pdf (Any fulltext), 4MB
 
File Permalink:
-
Name:
The Dark Energy Survey supernova programme modelling selection efficiency and observed core-collapse supernova contamination.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Vincenzi, M., Author
Sullivan, ‹ M., Author
Graur, O., Author
Brout, D., Author
Davis, T. M., Author
Frohmaier, C., Author
Galbany, L., Author
Gutierrez, C. P., Author
Hinton, S. R., Author
Hounsell, R., Author
Kelsey, L., Author
Kessler, R., Author
Kovacs, E., Author
Kuhlmann, S., Author
Lasker, J., Author
Lidman, C., Author
Moller, A., Author
Nichol, R. C., Author
Sako, M., Author
Scolnic, D., Author
Smith, M., AuthorSwann, E., AuthorWiseman, P., AuthorAsorey, J., AuthorLewis, G. F., AuthorSharp, R., AuthorTucker, B. E., AuthorAguena, M., AuthorAllam, S., AuthorAvila, S., AuthorBertin, E., AuthorBrooks, D., AuthorBurke, D. L., AuthorRosell, A. Carnero, AuthorKind, M. Carrasco, AuthorCarretero, J., AuthorCastander, F. J., AuthorChoi, A., AuthorCostanzi, M., Authorda Costa, L. N., AuthorPereira, M. E. S., AuthorVicente, J. De, AuthorDesai, S., AuthorDiehl, H. T., AuthorDoel, P., AuthorEverett, S., AuthorFerrero, I., AuthorFosalba, P., AuthorFrieman, J., AuthorGarcıa-Bellido, J., AuthorGaztanaga, E., AuthorGerdes, D. W., AuthorGruen, D., AuthorGruendl, R. A., AuthorGutierrez, G., AuthorHollowood, D. L., AuthorHonscheid, K., AuthorHoyle, B.1, Author           James, D. J., AuthorKuehn, K., AuthorKuropatkin, N., AuthorMaia, M. A. G., AuthorMartini, P., AuthorMenanteau, F., AuthorMiquel, R., AuthorMorgan, R., AuthorPalmese, A., AuthorPaz-Chinchon, F., AuthorPlazas, A. A., AuthorRomer, A. K., AuthorSanchez, E., AuthorScarpine, V., AuthorSerrano, S., AuthorSevilla-Noarbe, I., AuthorSoares-Santos, M., AuthorSuchyta, E., AuthorTarle, G., AuthorThomas, D., AuthorTo, C., AuthorVarga, T. N.1, Author           Walker, A. R., AuthorWilkinson, R. D., Author more..
Affiliations:
1Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society, ou_159895              

Content

show
hide
Free keywords: -
 Abstract: The analysis of current and future cosmological surveys of Type Ia supernovae (SNe Ia) at high redshift depends on the accurate photometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes an essential step for training and testing photometric classification algorithms, and for correcting biases introduced by selection effects and contamination arising from core-collapse SNe in the photometric SN Ia samples. We use published SN time-series spectrophotometric templates, rates, luminosity functions, and empirical relationships between SNe and their host galaxies to construct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark Energy Survey (DES) 5-yr photometric SN sample, comparing our simulations of DES with the observed DES transient populations. We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data. We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and before photometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation, we find that the predicted contamination varies from 7.2 to 11.7 per cent, with an average of 8.8 per cent and an r.m.s. of 1.1 per cent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveys without fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmology analysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associated systematic uncertainty.

Details

show
hide
Language(s): eng - English
 Dates: 2021-05-26
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1093/mnras/stab1353
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Monthly Notices of the Royal Astronomical Society
  Abbreviation : Mon. Not. Roy. Astron. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 505 (2) Sequence Number: - Start / End Page: 2819 - 2839 Identifier: ISSN: 0035-8711
ISSN: 1365-8711