Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  MotorSkins – a bio-inspired design approach toward an interactive soft-robotic exosuit

Gutierrez, F., & Razghandi, K. (2021). MotorSkins – a bio-inspired design approach toward an interactive soft-robotic exosuit. Bioinspiration & Biomimetics, 16(6): 066013. doi:10.1088/1748-3190/ac2785.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 4MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Gutierrez, Facundo, Autor
Razghandi, Khashayar1, Autor                 
Affiliations:
1Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863294              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Bio-inspiration, Design, Assistive technology, Exosuit, Fluid-driven, Soft-machine, Bio-inspired design, Design strategy, Interactive
 Zusammenfassung: The work presents a bio-inspired design approach to a soft-robotic solution for assisting the knee-bending in users with reduced mobility in lower limbs. Exosuits and fluid-driven actuators are fabric-based devices that are gaining increasing relevance as alternatives assistive technologies that can provide simpler, more flexible solutions in comparison with the rigid exoskeletons. These devices, however, commonly require an external energy supply or a pressurized-fluid reservoir, which considerably constrain the autonomy of such solutions. In this work, we introduce an Event-Based Energy Cycle (EBEC) design concept, that can harvest, store, and release the required energy for assisting the knee-bending, in a synchronised interaction with the user and the environment, thus eliminating any need for external energy or control input. ice-plant hydro-actuation system served as the source of inspiration to address the specific requirements of such interactive exosuit through a fluid-driven material system. Based on the EBEC design concepts and the abstracted bio-inspired principles, a series of (material and process driven) design experimentations helped to address the challenges of realising various functionalities of the harvest, storage, actuation and control instances within a closed hydraulic circuit. Sealing and defining various areas of water-tight seams made out of double layers of thermoplastic elastomers, provided the base material system to program various chambers, channels, flow-check valves etc. of such EBEC system. The resulting fluid-driven EBEC-Skin served as a proof of concept for such active exosuit, that brings these functionalities into an integrated “Sense-Acting” material system, realising an auto-synchronised energy and information cycles. The proposed design concept can serve as a model for development of similar fluid-driven EBEC soft-machines for further applications. Moreover, the work presents an interdisciplinary design-science approach to bio-inspiration, and showcases how biological material solutions can be looked at from a design/designer perspective to bridge the bottom-up and top-down approach to bio-inspiration.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-09-162021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1088/1748-3190/ac2785
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Bioinspiration & Biomimetics
  Kurztitel : Bioinspir. Biomim.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Inst. of Physics
Seiten: - Band / Heft: 16 (6) Artikelnummer: 066013 Start- / Endseite: - Identifikator: ISSN: 1748-3190