English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Neural encoding of perceived patch value during competitive and hazardous virtual foraging

Silston, B., Wise, T., Qi, S., Sui, X., Dayan, P., & Mobbs, D. (2021). Neural encoding of perceived patch value during competitive and hazardous virtual foraging. Nature Communications, 12: 5478, pp. 1-11. doi:https://www.nature.com/articles/s41467-021-25816-9.pdf.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Silston, B, Author
Wise, T, Author
Qi, S, Author
Sui, X, Author
Dayan, P1, 2, Author           
Mobbs, D, Author
Affiliations:
1Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017468              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Natural observations suggest that in safe environments, organisms avoid competition to maximize gain, while in hazardous environments the most effective survival strategy is to congregate with competition to reduce the likelihood of predatory attack. We probed the extent to which survival decisions in humans follow these patterns, and examined the factors that determined individual-level decision-making. In a virtual foraging task containing changing levels of competition in safe and hazardous patches with virtual predators, we demonstrate that human participants inversely select competition avoidant and risk diluting strategies depending on perceived patch value (PPV), a computation dependent on reward, threat, and competition. We formulate a mathematically grounded quantification of PPV in social foraging environments and show using multivariate fMRI analyses that PPV is encoded by mid-cingulate cortex (MCC) and ventromedial prefrontal cortices (vMPFC), regions that integrate action and value signals. Together, these results suggest humans utilize and integrate multidimensional information to adaptively select patches highest in PPV, and that MCC and vMPFC play a role in adapting to both competitive and predatory threats in a virtual foraging setting.

Details

show
hide
Language(s):
 Dates: 2021-09
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 12 Sequence Number: 5478 Start / End Page: 1 - 11 Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723