Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  Enhanced thermal stability of (Ti,Al)N coatings by oxygen incorporation

Holzapfel, D. M., Mušić, D., Hans, M., Wolff-Goodrich, S., Holec, D., Bogdanovski, D., et al. (2021). Enhanced thermal stability of (Ti,Al)N coatings by oxygen incorporation. Acta Materialia, 218: 117204. doi:10.1016/j.actamat.2021.117204.

Item is


show hide
Genre: Journal Article


show Files




Holzapfel, Damian M.1, Author           
Mušić, Denis2, Author           
Hans, Marcus3, Author           
Wolff-Goodrich, Silas4, Author           
Holec, David5, Author           
Bogdanovski, Dimitri6, Author           
Arndt, Mirjam7, Author           
Eriksson, Anders O.7, Author           
Yalamanchili, Kumar8, Author           
Primetzhofer, Daniel9, Author           
Liebscher, Christian4, Author           
Schneider, Jochen Michael10, Author           
1Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen, Germany , ou_persistent22              
2Department of Materials Science and Applied Mathematics, Malmö University, 20506 Malmö, Sweden, ou_persistent22              
3Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, Aachen, Germany, ou_persistent22              
4Advanced Transmission Electron Microscopy, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863399              
5Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Leoben, Austria, ou_persistent22              
6Institute of Inorganic Chemistry, Chair of Solid-State and Quantum Chemistry, RWTH Aachen University, 52056 Aachen, Germany, ou_persistent22              
7Oerlikon Surface Solutions AG, Oerlikon Balzers, Iramali 18, 9496 Balzers, Liechtenstein, ou_persistent22              
8Oerlikon Balzers, Oerlikon Surface Solutions AG, Iramali 18, LI-9496 Balzers, Liechtenstein, ou_persistent22              
9Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden, ou_persistent22              
10Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Germany, ou_persistent22              


Free keywords: TiAlN, TiAlON, Thermal stability, Hard coatings, Cathodic arc evaporation, Vacancies
 Abstract: Thermal stability of protective coatings is one of the performance-defining properties for advanced cutting and forming applications as well as for energy conversion. To investigate the effect of oxygen incorporation on the high-temperature behavior of (Ti,Al)N, metastable cubic (Ti,Al)N and (Ti,Al)(OxN1-x) coatings are synthesized using reactive arc evaporation. X-ray diffraction of (Ti,Al)N and (Ti,Al)(OxN1-x) coatings reveals that spinodal decomposition is initiated at approximately 800°C, while the subsequent formation of wurtzite solid solution is clearly delayed from 1000°C to 1300°C for (Ti,Al)(OxN1-x) compared to (Ti,Al)N. This thermal stability enhancement can be rationalized based on calculated vacancy formation energies in combination with spatially-resolved composition analysis and calorimetric data: Energy dispersive X-ray spectroscopy and atom probe tomography data indicate a lower O solubility in wurtzite solid solution compared to cubic (Ti,Al)(O,N). Hence, it is evident that for the growth of the wurtzite, AlN-rich phase in (Ti,Al)N, only mobility of Ti and Al is required, while for (Ti,Al)(O,N), in addition to mobile metal atoms, also non-metal mobility is required. Prerequisite for mobility on the non-metal sublattice is the formation of non-metal vacancies which require larger temperatures than for the metal sublattice due to significantly larger magnitudes of formation energies for the non-metal vacancies compared to the metal vacancies. This notion is consistent with calorimetry data which indicate that the combined energy necessary to form and grow the wurtzite phase is larger by a factor of approximately two in (Ti,Al)(O,N) than in (Ti,Al)N, causing the here reported thermal stability increase.


Language(s): eng - English
 Dates: 2021-10-01
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.actamat.2021.117204
 Degree: -



Legal Case


Project information


Source 1

Title: Acta Materialia
  Abbreviation : Acta Mater.
Source Genre: Journal
Publ. Info: Kidlington : Elsevier Science
Pages: - Volume / Issue: 218 Sequence Number: 117204 Start / End Page: - Identifier: ISSN: 1359-6454
CoNE: https://pure.mpg.de/cone/journals/resource/954928603100