English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  On the fracture behavior of Cr2AlC coatings

Völker, B., Stelzer, B., Mráz, S., Rueß, H., Sahu, R., Kirchlechner, C., et al. (2021). On the fracture behavior of Cr2AlC coatings. Materials and Design, 206: 109757. doi:10.1016/j.matdes.2021.109757.

Item is

Files

show Files
hide Files
:
On the fracture behavior of Cr2AlC coatings _ Elsevier Enhanced Reader.pdf (Publisher version), 4MB
Name:
On the fracture behavior of Cr2AlC coatings _ Elsevier Enhanced Reader.pdf
Description:
Open Access
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
The Authors. Published by Elsevier Ltd.

Locators

show

Creators

show
hide
 Creators:
Völker, Bernhard1, 2, 3, Author           
Stelzer, Bastian4, Author           
Mráz, Stanislav5, Author           
Rueß, Holger6, Author           
Sahu, Rajib5, 7, Author           
Kirchlechner, Christoph8, 9, Author           
Dehm, Gerhard2, Author           
Schneider, Jochen Michael10, Author           
Affiliations:
1Materials Chemistry, RWTH Aachen University, Aachen, Germany, ou_persistent22              
2Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863398              
3Department of Materials Physics, Montanuniversität Leoben, Austria, ou_persistent22              
4Materials Chemistry, RWTH Aachen University, D-52074, Aachen, Germany, ou_persistent22              
5Materials Chemistry, RWTH Aachen University, Kopernikusstraße 10, D-52074 Aachen, Germany, ou_persistent22              
6Materials Chemistry, RWTH Aachen University, Kopernikusstraße 10, 52074 Aachen, Germany, ou_persistent22              
7Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2054294              
8Nano-/ Micromechanics of Materials, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863401              
9Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen D-76344, Germany, ou_persistent22              
10Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Bulk MAX phase materials were investigated heavily in the last decades due to their advantageous combination of metallic and ceramic properties. In recent years, MAX phases also gained the interest of the protective coatings community. Cr2AlC is a very promising material, since the crystalline MAX phase can be deposited at comparatively low (550 degrees C) substrate temperatures. Another advantage of the Cr2AlC MAX phase is its self-healing ability. The goal of this investigation was to characterize the fracture toughness of Cr2AlC protective coatings using in situ SEM micro-cantilever tests and to determine the influence of different microstructures on the fracture behavior. Surprisingly, the fracture toughness is only moderately affected by the microstructure of the crystalline samples investigated here, which reveal a fracture toughness ranging from 1.8 +/- 0.1 MPam1/2 to 2.4 +/- 0.2 MPam1/2. In contrast to that, it could be shown that there is a significant increase in fracture toughness for the amorphous coating with identical chemical composition (4.1 +/- 0.5 MPam1/2) of almost twice the fracture toughness compared to the crystalline coatings. The detrimental influence of grain boundaries in the crystalline coating and the lack of grain boundaries in the amorphous sample might explain the formidable fracture toughness. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
<comment>Superscript/Subscript Available</comment

Details

show
hide
Language(s): eng - English
 Dates: 2021-08
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.matdes.2021.109757
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Materials and Design
  Abbreviation : Mater. Des.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Reigate, Surrey, Eng. : Elsevier
Pages: - Volume / Issue: 206 Sequence Number: 109757 Start / End Page: - Identifier: ISSN: 0264-1275
CoNE: https://pure.mpg.de/cone/journals/resource/954926234428