Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Deep recurrent networks predicting the gap evolution in adiabatic quantum computing

Mohseni, N., Navarrete-Benlloch, C., Byrnes, T., & Marquardt, F. (2023). Deep recurrent networks predicting the gap evolution in adiabatic quantum computing. Quantum, (7), 1039. doi:10.22331/q-2023-06-12-1039.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2021_Deep_recurrent.png (Ergänzendes Material), 31KB
Name:
2021_Deep_recurrent.png
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
image/png / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
q-2023-06-12-1039.pdf (beliebiger Volltext), 5MB
Name:
q-2023-06-12-1039.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Mohseni, Naeimeh1, 2, Autor
Navarrete-Benlloch, Carlos1, 3, 4, Autor
Byrnes, Tim5, 6, 7, 8, 9, Autor
Marquardt, Florian1, 2, Autor           
Affiliations:
1Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_2421700              
2Physics Department, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany, ou_persistent22              
3Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China, ou_persistent22              
4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China, ou_persistent22              
5New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China, ou_persistent22              
6State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University, Shanghai 200062, China, ou_persistent22              
7NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China, ou_persistent22              
8National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan, ou_persistent22              
9Department of Physics, New York University, New York, NY 10003, USA, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: One of the main challenges in quantum physics is predicting efficiently the dynamics of observables in many-body problems out of equilibrium. A particular example occurs in adiabatic quantum computing, where finding the structure of the instantaneous gap of the Hamiltonian is crucial in order to optimize the speed of the computation. Inspired by this challenge, in this work we explore the potential of deep learning for discovering a mapping from the parameters that fully identify a problem Hamiltonian to the full evolution of the gap during an adiabatic sweep applying different network architectures. Through this example, we find that a limiting factor for the learnability of the dynamics is the size of the input, that is, how the number of parameters needed to identify the Hamiltonian scales with the system size. We demonstrate that a long short-term memory network succeeds in predicting the gap when the parameter space scales linearly with system size. Remarkably, we show that once this architecture is combined with a convolutional neural network to deal with the spatial structure of the model, the gap evolution can even be predicted for system sizes larger than the ones seen by the neural network during training. This provides a significant speedup in comparison with the existing exact and approximate algorithms in calculating the gap.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-06-12
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.22331/q-2023-06-12-1039
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Quantum
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Seiten: - Band / Heft: (7) Artikelnummer: - Start- / Endseite: 1039 Identifikator: ISSN: 2521-327X
Anderer: https://doi.org/10.22331/q
CoNE: https://pure.mpg.de/cone/journals/resource/2521-327X