Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes

Makarov, S. N., Golestanirad, L., Wartman, W. A., Nguyen, B. T., Noetscher, G. M., Ahveninen, J. P., et al. (2021). Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes. Journal of Neural Engineering, 18(4): 0460d4. doi:10.1088/1741-2552/ac17d7.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8783394/ (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Grün

Urheber

einblenden:
ausblenden:
 Urheber:
Makarov, Sergey N.1, 2, Autor
Golestanirad, Laleh3, Autor
Wartman, William A.1, Autor
Nguyen, Bach Thanh3, Autor
Noetscher, Gregory M.1, Autor
Ahveninen, Jyrki P.2, Autor
Fujimoto, Kyoko4, Autor
Weise, Konstantin5, Autor           
Nummenmaa, Aapo R.2, Autor
Affiliations:
1Electrical and Computer Engineering Department, Worcester Polytechnic Institute, MA, USA, ou_persistent22              
2Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA, ou_persistent22              
3Department of Biomedical Engineering, Northwestern University, Chicago, MA, USA, ou_persistent22              
4Center for Devices and Radiological Health (CDRH), Silver Spring, MD, USA, ou_persistent22              
5Methods and Development Group Brain Networks, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_2205650              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Boundary element method; Deep brain stimulation; Electroencephalography; Fast multipole method; Intracortical microstimulation; Numerical modeling; Transcranial electrical stimulation
 Zusammenfassung: Objective. To formulate, validate, and apply an alternative to the finite element method (FEM) high-resolution modeling technique for electrical brain stimulation-the boundary element fast multipole method (BEM-FMM). To include practical electrode models for both surface and embedded electrodes.Approach. Integral equations of the boundary element method in terms of surface charge density are combined with a general-purpose fast multipole method and are expanded for voltage, shunt, current, and floating electrodes. The solution of coupled and properly weighted/preconditioned integral equations is accompanied by enforcing global conservation laws: charge conservation law and Kirchhoff's current law.Main results.A sub-percent accuracy is reported as compared to the analytical solutions and simple validation geometries. Comparison to FEM considering realistic head models resulted in relative differences of the electric field magnitude in the range of 3%-6% or less. Quantities that contain higher order spatial derivatives, such as the activating function, are determined with a higher accuracy and a faster speed as compared to the FEM. The method can be easily combined with existing head modeling pipelines such as headreco or mri2mesh.Significance.The BEM-FMM does not rely on a volumetric mesh and is therefore particularly suitable for modeling some mesoscale problems with submillimeter (and possibly finer) resolution with high accuracy at moderate computational cost. Utilizing Helmholtz reciprocity principle makes it possible to expand the method to a solution of EEG forward problems with a very large number of cortical dipoles.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-02-232021-08-19
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1088/1741-2552/ac17d7
PMID: 34311449
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : WE 59851/2
Förderprogramm : -
Förderorganisation : Deutsche Forschungsgemeinschaft (DFG)
Projektname : -
Grant ID : 1R01MH111829; R01DC016765; P41EB030006
Förderprogramm : -
Förderorganisation : National Institutes of Health (NIH)

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Neural Engineering
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol : Institute of Physics Publishing
Seiten: - Band / Heft: 18 (4) Artikelnummer: 0460d4 Start- / Endseite: - Identifikator: ISSN: 1741-2552
CoNE: https://pure.mpg.de/cone/journals/resource/17412552